Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -48,28 +48,31 @@ demo = gr.Interface(fn=classify_sentiment,
|
|
| 48 |
demo.launch()
|
| 49 |
'''
|
| 50 |
import gradio as gr
|
| 51 |
-
from transformers import TFBertForSequenceClassification,
|
| 52 |
import tensorflow as tf
|
| 53 |
|
| 54 |
-
# Load model and tokenizer
|
| 55 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 56 |
-
tokenizer =
|
| 57 |
|
| 58 |
def classify_sentiment(text):
|
| 59 |
text = text.lower().strip()
|
| 60 |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
| 61 |
outputs = model(inputs, training=False)
|
| 62 |
logits = outputs.logits
|
| 63 |
-
label_id = tf.argmax(logits, axis=1).numpy()[0]
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
# Gradio
|
| 73 |
demo = gr.Interface(
|
| 74 |
fn=classify_sentiment,
|
| 75 |
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
|
@@ -78,5 +81,6 @@ demo = gr.Interface(
|
|
| 78 |
description="Multilingual BERT-based Sentiment Analysis"
|
| 79 |
)
|
| 80 |
|
|
|
|
| 81 |
demo.launch()
|
| 82 |
|
|
|
|
| 48 |
demo.launch()
|
| 49 |
'''
|
| 50 |
import gradio as gr
|
| 51 |
+
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 52 |
import tensorflow as tf
|
| 53 |
|
| 54 |
+
# Load model and tokenizer from Hugging Face Hub
|
| 55 |
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 56 |
+
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
| 57 |
|
| 58 |
def classify_sentiment(text):
|
| 59 |
text = text.lower().strip()
|
| 60 |
inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
|
| 61 |
outputs = model(inputs, training=False)
|
| 62 |
logits = outputs.logits
|
| 63 |
+
label_id = int(tf.argmax(logits, axis=1).numpy()[0])
|
| 64 |
|
| 65 |
+
# Handle label mapping correctly
|
| 66 |
+
raw_labels = model.config.id2label
|
| 67 |
+
if isinstance(list(raw_labels.keys())[0], str):
|
| 68 |
+
label = raw_labels.get(str(label_id), "Unknown")
|
| 69 |
+
else:
|
| 70 |
+
label = raw_labels.get(label_id, "Unknown")
|
| 71 |
+
|
| 72 |
+
print(f"Text: {text} | Label ID: {label_id} | Label: {label} | Logits: {logits.numpy()}")
|
| 73 |
+
return label
|
| 74 |
|
| 75 |
+
# Define the Gradio interface
|
| 76 |
demo = gr.Interface(
|
| 77 |
fn=classify_sentiment,
|
| 78 |
inputs=gr.Textbox(placeholder="Enter a tweet..."),
|
|
|
|
| 81 |
description="Multilingual BERT-based Sentiment Analysis"
|
| 82 |
)
|
| 83 |
|
| 84 |
+
# Launch the app
|
| 85 |
demo.launch()
|
| 86 |
|