Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -359,7 +359,7 @@ demo = gr.Interface(
|
|
| 359 |
|
| 360 |
demo.launch()
|
| 361 |
'''
|
| 362 |
-
|
| 363 |
import gradio as gr
|
| 364 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 365 |
import tensorflow as tf
|
|
@@ -534,195 +534,16 @@ demo = gr.TabbedInterface(
|
|
| 534 |
)
|
| 535 |
|
| 536 |
demo.launch()
|
| 537 |
-
'''
|
| 538 |
-
|
| 539 |
-
import gradio as gr
|
| 540 |
-
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 541 |
-
import tensorflow as tf
|
| 542 |
-
import praw
|
| 543 |
-
import os
|
| 544 |
-
import pytesseract
|
| 545 |
-
from PIL import Image
|
| 546 |
-
import cv2
|
| 547 |
-
import numpy as np
|
| 548 |
-
import re
|
| 549 |
-
|
| 550 |
-
from evaluate import get_classification_report
|
| 551 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 552 |
-
import torch
|
| 553 |
-
from scipy.special import softmax
|
| 554 |
-
import matplotlib.pyplot as plt
|
| 555 |
-
import pandas as pd
|
| 556 |
-
|
| 557 |
-
# Install tesseract OCR (only runs once in Hugging Face Spaces)
|
| 558 |
-
os.system("apt-get update && apt-get install -y tesseract-ocr")
|
| 559 |
-
|
| 560 |
-
# Load main model
|
| 561 |
-
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
|
| 562 |
-
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")
|
| 563 |
-
|
| 564 |
-
LABELS = {0: "Neutral", 1: "Positive", 2: "Negative"}
|
| 565 |
-
|
| 566 |
-
# Load fallback model
|
| 567 |
-
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
| 568 |
-
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
|
| 569 |
-
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
|
| 570 |
-
|
| 571 |
-
# Reddit API setup
|
| 572 |
-
reddit = praw.Reddit(
|
| 573 |
-
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
| 574 |
-
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
| 575 |
-
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui")
|
| 576 |
-
)
|
| 577 |
-
|
| 578 |
-
def fetch_reddit_text(reddit_url):
|
| 579 |
-
try:
|
| 580 |
-
submission = reddit.submission(url=reddit_url)
|
| 581 |
-
return f"{submission.title}\n\n{submission.selftext}"
|
| 582 |
-
except Exception as e:
|
| 583 |
-
return f"Error fetching Reddit post: {str(e)}"
|
| 584 |
|
| 585 |
-
def fallback_classifier(text):
|
| 586 |
-
encoded_input = fallback_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
| 587 |
-
with torch.no_grad():
|
| 588 |
-
output = fallback_model(**encoded_input)
|
| 589 |
-
scores = softmax(output.logits.numpy()[0])
|
| 590 |
-
labels = ['Negative', 'Neutral', 'Positive']
|
| 591 |
-
return f"Prediction: {labels[scores.argmax()]}"
|
| 592 |
|
| 593 |
-
def clean_ocr_text(text):
|
| 594 |
-
text = text.strip()
|
| 595 |
-
text = re.sub(r'\s+', ' ', text)
|
| 596 |
-
text = re.sub(r'[^\x00-\x7F]+', '', text)
|
| 597 |
-
return text
|
| 598 |
|
| 599 |
-
def classify_sentiment(text_input, reddit_url, image):
|
| 600 |
-
if reddit_url.strip():
|
| 601 |
-
text = fetch_reddit_text(reddit_url)
|
| 602 |
-
elif image is not None:
|
| 603 |
-
try:
|
| 604 |
-
img_array = np.array(image)
|
| 605 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 606 |
-
_, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
| 607 |
-
text = pytesseract.image_to_string(thresh)
|
| 608 |
-
text = clean_ocr_text(text)
|
| 609 |
-
except Exception as e:
|
| 610 |
-
return f"[!] OCR failed: {str(e)}"
|
| 611 |
-
elif text_input.strip():
|
| 612 |
-
text = text_input
|
| 613 |
-
else:
|
| 614 |
-
return "[!] Please enter some text, upload an image, or provide a Reddit URL."
|
| 615 |
|
| 616 |
-
if text.lower().startswith("error") or "Unable to extract" in text:
|
| 617 |
-
return f"[!] {text}"
|
| 618 |
|
| 619 |
-
try:
|
| 620 |
-
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 621 |
-
outputs = model(inputs)
|
| 622 |
-
probs = tf.nn.softmax(outputs.logits, axis=1)
|
| 623 |
-
confidence = float(tf.reduce_max(probs).numpy())
|
| 624 |
-
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
| 625 |
|
| 626 |
-
if confidence < 0.5:
|
| 627 |
-
return fallback_classifier(text)
|
| 628 |
|
| 629 |
-
|
| 630 |
-
except Exception as e:
|
| 631 |
-
return f"[!] Prediction error: {str(e)}"
|
| 632 |
-
|
| 633 |
-
def analyze_subreddit(subreddit_name):
|
| 634 |
-
try:
|
| 635 |
-
subreddit = reddit.subreddit(subreddit_name)
|
| 636 |
-
posts = list(subreddit.hot(limit=20))
|
| 637 |
-
|
| 638 |
-
sentiments = []
|
| 639 |
-
titles = []
|
| 640 |
-
|
| 641 |
-
for post in posts:
|
| 642 |
-
text = f"{post.title}\n{post.selftext}"
|
| 643 |
-
try:
|
| 644 |
-
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
|
| 645 |
-
outputs = model(inputs)
|
| 646 |
-
probs = tf.nn.softmax(outputs.logits, axis=1)
|
| 647 |
-
confidence = float(tf.reduce_max(probs).numpy())
|
| 648 |
-
pred_label = tf.argmax(probs, axis=1).numpy()[0]
|
| 649 |
-
|
| 650 |
-
sentiment = LABELS[pred_label] if confidence >= 0.5 else fallback_classifier(text).split(": ")[-1]
|
| 651 |
-
except:
|
| 652 |
-
sentiment = "Error"
|
| 653 |
-
sentiments.append(sentiment)
|
| 654 |
-
titles.append(post.title)
|
| 655 |
-
|
| 656 |
-
df = pd.DataFrame({"Title": titles, "Sentiment": sentiments})
|
| 657 |
-
sentiment_counts = df["Sentiment"].value_counts()
|
| 658 |
-
|
| 659 |
-
# Plot bar chart
|
| 660 |
-
fig, ax = plt.subplots()
|
| 661 |
-
sentiment_counts.plot(kind="bar", color=["red", "green", "gray"], ax=ax)
|
| 662 |
-
ax.set_title(f"Sentiment Distribution in r/{subreddit_name}")
|
| 663 |
-
ax.set_xlabel("Sentiment")
|
| 664 |
-
ax.set_ylabel("Number of Posts")
|
| 665 |
-
|
| 666 |
-
return fig, df
|
| 667 |
-
except Exception as e:
|
| 668 |
-
return f"[!] Error: {str(e)}", pd.DataFrame()
|
| 669 |
-
|
| 670 |
-
# Gradio tab 1: Text/Image/Reddit Post Analysis
|
| 671 |
-
main_interface = gr.Interface(
|
| 672 |
-
fn=classify_sentiment,
|
| 673 |
-
inputs=[
|
| 674 |
-
gr.Textbox(
|
| 675 |
-
label="Text Input (can be tweet or any content)",
|
| 676 |
-
placeholder="Paste tweet or type any content here...",
|
| 677 |
-
lines=4
|
| 678 |
-
),
|
| 679 |
-
gr.Textbox(
|
| 680 |
-
label="Reddit Post URL",
|
| 681 |
-
placeholder="Paste a Reddit post URL (optional)",
|
| 682 |
-
lines=1
|
| 683 |
-
),
|
| 684 |
-
gr.Image(
|
| 685 |
-
label="Upload Image (optional)",
|
| 686 |
-
type="pil"
|
| 687 |
-
)
|
| 688 |
-
],
|
| 689 |
-
outputs="text",
|
| 690 |
-
title="Sentiment Analyzer",
|
| 691 |
-
description="🔍 Paste any text, Reddit post URL, or upload an image containing text to analyze sentiment.\n\n💡 Tweet URLs are not supported. Please paste tweet content or screenshot instead."
|
| 692 |
-
)
|
| 693 |
-
|
| 694 |
-
# Gradio tab 2: Subreddit Analysis
|
| 695 |
-
subreddit_interface = gr.Interface(
|
| 696 |
-
fn=analyze_subreddit,
|
| 697 |
-
inputs=gr.Textbox(label="Subreddit Name", placeholder="e.g., AskReddit"),
|
| 698 |
-
outputs=[
|
| 699 |
-
gr.Plot(label="Sentiment Distribution"),
|
| 700 |
-
gr.Dataframe(label="Post Titles and Sentiments", wrap=True)
|
| 701 |
-
],
|
| 702 |
-
title="Subreddit Sentiment Analysis",
|
| 703 |
-
description="📊 Enter a subreddit to analyze sentiment of its top 20 hot posts."
|
| 704 |
-
)
|
| 705 |
-
eval_interface = gr.Interface(
|
| 706 |
-
fn=lambda: get_classification_report(),
|
| 707 |
-
inputs=[],
|
| 708 |
-
outputs="text",
|
| 709 |
-
title="Evaluate Model",
|
| 710 |
-
description="Run evaluation on test.csv and view classification report."
|
| 711 |
-
)
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
# Combine tabs
|
| 715 |
-
'''demo = gr.TabbedInterface(
|
| 716 |
-
interface_list=[main_interface, subreddit_interface],
|
| 717 |
-
tab_names=["General Sentiment Analysis", "Subreddit Analysis"]
|
| 718 |
-
)
|
| 719 |
-
'''
|
| 720 |
-
demo = gr.TabbedInterface(
|
| 721 |
-
interface_list=[main_interface, subreddit_interface, eval_interface],
|
| 722 |
-
tab_names=["General Sentiment Analysis", "Subreddit Analysis", "Evaluate Model"]
|
| 723 |
-
)
|
| 724 |
|
| 725 |
-
|
| 726 |
|
| 727 |
|
| 728 |
|
|
|
|
| 359 |
|
| 360 |
demo.launch()
|
| 361 |
'''
|
| 362 |
+
|
| 363 |
import gradio as gr
|
| 364 |
from transformers import TFBertForSequenceClassification, BertTokenizer
|
| 365 |
import tensorflow as tf
|
|
|
|
| 534 |
)
|
| 535 |
|
| 536 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
|
|
|
|
|
|
| 541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
|
|
|
|
|
|
| 543 |
|
| 544 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 545 |
|
| 546 |
+
|
| 547 |
|
| 548 |
|
| 549 |
|