Spaces:
Sleeping
Sleeping
Upload infer_serverless.py
Browse files- infer_serverless.py +679 -0
infer_serverless.py
ADDED
|
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import librosa
|
| 4 |
+
import asyncio
|
| 5 |
+
import rarfile
|
| 6 |
+
import edge_tts
|
| 7 |
+
import yt_dlp
|
| 8 |
+
import ffmpeg
|
| 9 |
+
import gdown
|
| 10 |
+
import subprocess
|
| 11 |
+
import wave
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
from scipy.io import wavfile
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from urllib.parse import urlparse
|
| 16 |
+
from mega import Mega
|
| 17 |
+
from flask import Flask, request, jsonify, send_file,session,render_template
|
| 18 |
+
import base64
|
| 19 |
+
import tempfile
|
| 20 |
+
import threading
|
| 21 |
+
import hashlib
|
| 22 |
+
import os
|
| 23 |
+
import werkzeug
|
| 24 |
+
from pydub import AudioSegment
|
| 25 |
+
import uuid
|
| 26 |
+
from threading import Semaphore
|
| 27 |
+
from threading import Lock
|
| 28 |
+
from multiprocessing import Process, SimpleQueue, set_start_method,get_context
|
| 29 |
+
from queue import Empty
|
| 30 |
+
from pydub import AudioSegment
|
| 31 |
+
from flask_dance.contrib.google import make_google_blueprint, google
|
| 32 |
+
import io
|
| 33 |
+
import runpod
|
| 34 |
+
import boto3
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
app = Flask(__name__)
|
| 41 |
+
app.secret_key = 'smjain_6789'
|
| 42 |
+
now_dir = os.getcwd()
|
| 43 |
+
cpt={}
|
| 44 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 45 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 46 |
+
os.makedirs(tmp, exist_ok=True)
|
| 47 |
+
os.environ["TEMP"] = tmp
|
| 48 |
+
split_model="htdemucs"
|
| 49 |
+
convert_voice_lock = Lock()
|
| 50 |
+
# Define the maximum number of concurrent requests
|
| 51 |
+
MAX_CONCURRENT_REQUESTS = 2 # Adjust this number as needed
|
| 52 |
+
|
| 53 |
+
# Initialize the semaphore with the maximum number of concurrent requests
|
| 54 |
+
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)
|
| 55 |
+
|
| 56 |
+
task_status_tracker = {}
|
| 57 |
+
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" # ONLY FOR TESTING, REMOVE IN PRODUCTION
|
| 58 |
+
os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
|
| 59 |
+
app.config["GOOGLE_OAUTH_CLIENT_ID"] = "144930881143-n3e3ubers3vkq7jc9doe4iirasgimdt2.apps.googleusercontent.com"
|
| 60 |
+
app.config["GOOGLE_OAUTH_CLIENT_SECRET"] = "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"
|
| 61 |
+
google_blueprint = make_google_blueprint(scope=["profile", "email"])
|
| 62 |
+
app.register_blueprint(google_blueprint, url_prefix="/login")
|
| 63 |
+
ACCESS_ID = os.getenv('ACCESS_ID', '')
|
| 64 |
+
SECRET_KEY = os.getenv('SECRET_KEY', '')
|
| 65 |
+
|
| 66 |
+
#set_start_method('spawn', force=True)
|
| 67 |
+
from lib.infer_pack.models import (
|
| 68 |
+
SynthesizerTrnMs256NSFsid,
|
| 69 |
+
SynthesizerTrnMs256NSFsid_nono,
|
| 70 |
+
SynthesizerTrnMs768NSFsid,
|
| 71 |
+
SynthesizerTrnMs768NSFsid_nono,
|
| 72 |
+
)
|
| 73 |
+
from fairseq import checkpoint_utils
|
| 74 |
+
from vc_infer_pipeline import VC
|
| 75 |
+
from config import Config
|
| 76 |
+
config = Config()
|
| 77 |
+
|
| 78 |
+
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
| 79 |
+
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
|
| 80 |
+
|
| 81 |
+
hubert_model = None
|
| 82 |
+
|
| 83 |
+
f0method_mode = ["pm", "harvest", "crepe"]
|
| 84 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def index():
|
| 88 |
+
# Check if user is logged in
|
| 89 |
+
return render_template("ui.html")
|
| 90 |
+
#if google.authorized:
|
| 91 |
+
# return render_template("index.html", logged_in=True)
|
| 92 |
+
#else:
|
| 93 |
+
# return render_template("index.html", logged_in=False)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
if os.path.isfile("rmvpe.pt"):
|
| 99 |
+
f0method_mode.insert(2, "rmvpe")
|
| 100 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def load_hubert():
|
| 106 |
+
global hubert_model
|
| 107 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 108 |
+
["hubert_base.pt"],
|
| 109 |
+
suffix="",
|
| 110 |
+
)
|
| 111 |
+
hubert_model = models[0]
|
| 112 |
+
hubert_model = hubert_model.to(config.device)
|
| 113 |
+
if config.is_half:
|
| 114 |
+
hubert_model = hubert_model.half()
|
| 115 |
+
else:
|
| 116 |
+
hubert_model = hubert_model.float()
|
| 117 |
+
hubert_model.eval()
|
| 118 |
+
|
| 119 |
+
load_hubert()
|
| 120 |
+
|
| 121 |
+
weight_root = "weights"
|
| 122 |
+
index_root = "weights/index"
|
| 123 |
+
weights_model = []
|
| 124 |
+
weights_index = []
|
| 125 |
+
for _, _, model_files in os.walk(weight_root):
|
| 126 |
+
for file in model_files:
|
| 127 |
+
if file.endswith(".pth"):
|
| 128 |
+
weights_model.append(file)
|
| 129 |
+
for _, _, index_files in os.walk(index_root):
|
| 130 |
+
for file in index_files:
|
| 131 |
+
if file.endswith('.index') and "trained" not in file:
|
| 132 |
+
weights_index.append(os.path.join(index_root, file))
|
| 133 |
+
|
| 134 |
+
def check_models():
|
| 135 |
+
weights_model = []
|
| 136 |
+
weights_index = []
|
| 137 |
+
for _, _, model_files in os.walk(weight_root):
|
| 138 |
+
for file in model_files:
|
| 139 |
+
if file.endswith(".pth"):
|
| 140 |
+
weights_model.append(file)
|
| 141 |
+
for _, _, index_files in os.walk(index_root):
|
| 142 |
+
for file in index_files:
|
| 143 |
+
if file.endswith('.index') and "trained" not in file:
|
| 144 |
+
weights_index.append(os.path.join(index_root, file))
|
| 145 |
+
return (
|
| 146 |
+
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
|
| 147 |
+
gr.Dropdown.update(choices=sorted(weights_index))
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def clean():
|
| 151 |
+
return (
|
| 152 |
+
gr.Dropdown.update(value=""),
|
| 153 |
+
gr.Slider.update(visible=False)
|
| 154 |
+
)
|
| 155 |
+
# Function to delete files
|
| 156 |
+
def cleanup_files(file_paths):
|
| 157 |
+
for path in file_paths:
|
| 158 |
+
try:
|
| 159 |
+
os.remove(path)
|
| 160 |
+
print(f"Deleted {path}")
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"Error deleting {path}: {e}")
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def upload_file(local_file_path,bucket_name):
|
| 169 |
+
# Configure the client with your credentials
|
| 170 |
+
session = boto3.session.Session()
|
| 171 |
+
client = session.client('s3',
|
| 172 |
+
region_name='nyc3',
|
| 173 |
+
endpoint_url='https://nyc3.digitaloceanspaces.com',
|
| 174 |
+
aws_access_key_id=ACCESS_ID,
|
| 175 |
+
aws_secret_access_key=SECRET_KEY)
|
| 176 |
+
|
| 177 |
+
# Define the bucket and object key
|
| 178 |
+
|
| 179 |
+
filename = os.path.basename(local_file_path)
|
| 180 |
+
object_key = f'{filename}' # Construct the object key
|
| 181 |
+
|
| 182 |
+
# Define the local path to save the file
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
response=client.upload_file(local_file_path, bucket_name, filename)
|
| 188 |
+
|
| 189 |
+
except client.exceptions.NoSuchKey:
|
| 190 |
+
return jsonify({'error': 'File not found in the bucket'}), 404
|
| 191 |
+
except Exception as e:
|
| 192 |
+
return jsonify({'error': str(e)}), 500
|
| 193 |
+
|
| 194 |
+
# Optional: Send the file directly to the client
|
| 195 |
+
# return send_file(local_file_path, as_attachment=True)
|
| 196 |
+
|
| 197 |
+
return jsonify({'success': True, 'message': 'File downloaded successfully', 'file_path': local_file_path})
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def download_file(filename,bucket_name):
|
| 202 |
+
# Configure the client with your credentials
|
| 203 |
+
session = boto3.session.Session()
|
| 204 |
+
client = session.client('s3',
|
| 205 |
+
region_name='nyc3',
|
| 206 |
+
endpoint_url='https://nyc3.digitaloceanspaces.com',
|
| 207 |
+
aws_access_key_id=ACCESS_ID,
|
| 208 |
+
aws_secret_access_key=SECRET_KEY)
|
| 209 |
+
|
| 210 |
+
# Define the bucket and object key
|
| 211 |
+
|
| 212 |
+
object_key = f'{filename}' # Construct the object key
|
| 213 |
+
|
| 214 |
+
# Define the local path to save the file
|
| 215 |
+
local_file_path = os.path.join('downloads', filename)
|
| 216 |
+
|
| 217 |
+
# Check if the 'downloads' directory exists, create it if not
|
| 218 |
+
if not os.path.exists(os.path.dirname(local_file_path)):
|
| 219 |
+
os.makedirs(os.path.dirname(local_file_path))
|
| 220 |
+
|
| 221 |
+
# Download the file from the bucket
|
| 222 |
+
try:
|
| 223 |
+
client.download_file(bucket_name, object_key, local_file_path)
|
| 224 |
+
except client.exceptions.NoSuchKey:
|
| 225 |
+
return jsonify({'error': 'File not found in the bucket'}), 404
|
| 226 |
+
except Exception as e:
|
| 227 |
+
return jsonify({'error': str(e)}), 500
|
| 228 |
+
|
| 229 |
+
# Optional: Send the file directly to the client
|
| 230 |
+
# return send_file(local_file_path, as_attachment=True)
|
| 231 |
+
|
| 232 |
+
return jsonify({'success': True, 'message': 'File downloaded successfully', 'file_path': local_file_path})
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def list_weights():
|
| 236 |
+
directory = 'weights'
|
| 237 |
+
files = os.listdir(directory)
|
| 238 |
+
# Extract filenames without their extensions
|
| 239 |
+
filenames = [os.path.splitext(file)[0] for file in files if os.path.isfile(os.path.join(directory, file))]
|
| 240 |
+
return jsonify(filenames)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def logout():
|
| 244 |
+
# Clear the session
|
| 245 |
+
session.clear()
|
| 246 |
+
#if "google_oauth_token" in session:
|
| 247 |
+
# del session["google_oauth_token"]
|
| 248 |
+
return redirect(url_for("index"))
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def get_status(audio_id):
|
| 253 |
+
# Retrieve the task status using the unique ID
|
| 254 |
+
print(audio_id)
|
| 255 |
+
status_info = task_status_tracker.get(audio_id, {"status": "Unknown ID", "percentage": 0})
|
| 256 |
+
return jsonify({"audio_id": audio_id, "status": status_info["status"], "percentage": status_info["percentage"]})
|
| 257 |
+
|
| 258 |
+
processed_audio_storage = {}
|
| 259 |
+
|
| 260 |
+
def api_convert_voice(filename,spk_id1,unique_id):
|
| 261 |
+
acquired = request_semaphore.acquire(blocking=False)
|
| 262 |
+
|
| 263 |
+
if not acquired:
|
| 264 |
+
return jsonify({"error": "Too many requests, please try again later"}), 429
|
| 265 |
+
#task_status_tracker[unique_id] = {"status": "Starting", "percentage": 0}
|
| 266 |
+
try:
|
| 267 |
+
|
| 268 |
+
#if session.get('submitted'):
|
| 269 |
+
# return jsonify({"error": "Form already submitted"}), 400
|
| 270 |
+
|
| 271 |
+
# Process the form here...
|
| 272 |
+
# Set the flag indicating the form has been submitted
|
| 273 |
+
#session['submitted'] = True
|
| 274 |
+
|
| 275 |
+
spk_id = spk_id1+'.pth'
|
| 276 |
+
print("speaker id path=",spk_id)
|
| 277 |
+
voice_transform = 0
|
| 278 |
+
local_file_path = os.path.join('downloads', filename)
|
| 279 |
+
# The file part
|
| 280 |
+
|
| 281 |
+
file_size = os.path.getsize(local_file_path)
|
| 282 |
+
if file_size > 10 * 1024 * 1024: # 10 MB limit
|
| 283 |
+
return json.dumps({"error": "File size exceeds 10 MB"}), 400
|
| 284 |
+
|
| 285 |
+
content_type_format_map = {
|
| 286 |
+
'audio/mpeg': 'mp3',
|
| 287 |
+
'audio/wav': 'wav',
|
| 288 |
+
'audio/x-wav': 'wav',
|
| 289 |
+
'audio/mp4': 'mp4',
|
| 290 |
+
'audio/x-m4a': 'mp4',
|
| 291 |
+
}
|
| 292 |
+
|
| 293 |
+
# Default to 'mp3' if content type is unknown (or adjust as needed)
|
| 294 |
+
audio_format = content_type_format_map.get(file.content_type, 'mp3')
|
| 295 |
+
|
| 296 |
+
# Convert the uploaded file to an audio segment
|
| 297 |
+
audio = AudioSegment.from_file(local_file_path, format=audio_format)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
# Calculate audio length in minutes
|
| 303 |
+
audio_length_minutes = len(audio) / 60000.0 # pydub returns length in milliseconds
|
| 304 |
+
|
| 305 |
+
if audio_length_minutes > 5:
|
| 306 |
+
return json.dumps({"error": "Audio length exceeds 5 minutes"}), 400
|
| 307 |
+
|
| 308 |
+
#created_files = []
|
| 309 |
+
# Save the file to a temporary path
|
| 310 |
+
#unique_id = str(uuid.uuid4())
|
| 311 |
+
print(unique_id)
|
| 312 |
+
base_filename = os.path.basename(local_file_path)
|
| 313 |
+
|
| 314 |
+
filename = werkzeug.utils.secure_filename(base_filename)
|
| 315 |
+
input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio_{unique_id}.{filename.split('.')[-1]}")
|
| 316 |
+
file.save(input_audio_path)
|
| 317 |
+
|
| 318 |
+
#created_files.append(input_audio_path)
|
| 319 |
+
|
| 320 |
+
#split audio
|
| 321 |
+
task_status_tracker[unique_id] = {"status": "Processing: Step 1", "percentage": 30}
|
| 322 |
+
|
| 323 |
+
cut_vocal_and_inst(input_audio_path,spk_id,unique_id)
|
| 324 |
+
print("audio splitting performed")
|
| 325 |
+
vocal_path = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/vocals.wav"
|
| 326 |
+
inst = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/no_vocals.wav"
|
| 327 |
+
print("*****before making call to convert ", unique_id)
|
| 328 |
+
#task_status_tracker[unique_id] = "Processing: Step 2"
|
| 329 |
+
#output_queue = SimpleQueue()
|
| 330 |
+
ctx = get_context('spawn')
|
| 331 |
+
output_queue = ctx.Queue()
|
| 332 |
+
# Create and start the process
|
| 333 |
+
p = ctx.Process(target=worker, args=(spk_id, vocal_path, voice_transform, unique_id, output_queue,))
|
| 334 |
+
p.start()
|
| 335 |
+
|
| 336 |
+
# Wait for the process to finish and get the result
|
| 337 |
+
p.join()
|
| 338 |
+
print("*******waiting for process to complete ")
|
| 339 |
+
|
| 340 |
+
output_path = output_queue.get()
|
| 341 |
+
task_status_tracker[unique_id] = {"status": "Processing: Step 2", "percentage": 80}
|
| 342 |
+
#if isinstance(output_path, Exception):
|
| 343 |
+
# print("Exception in worker:", output_path)
|
| 344 |
+
#else:
|
| 345 |
+
# print("output path of converted voice", output_path)
|
| 346 |
+
#output_path = convert_voice(spk_id, vocal_path, voice_transform,unique_id)
|
| 347 |
+
output_path1= combine_vocal_and_inst(output_path,inst,unique_id)
|
| 348 |
+
|
| 349 |
+
processed_audio_storage[unique_id] = output_path1
|
| 350 |
+
session['processed_audio_id'] = unique_id
|
| 351 |
+
task_status_tracker[unique_id] = {"status": "Finalizing", "percentage": 100}
|
| 352 |
+
print(output_path1)
|
| 353 |
+
upload_file(outputpath1)
|
| 354 |
+
print("file uploaded")
|
| 355 |
+
#created_files.extend([vocal_path, inst, output_path])
|
| 356 |
+
task_status_tracker[unique_id]["status"] = "Completed"
|
| 357 |
+
|
| 358 |
+
finally:
|
| 359 |
+
request_semaphore.release()
|
| 360 |
+
#if os.path.exists(output_path1):
|
| 361 |
+
|
| 362 |
+
# return send_file(output_path1, as_attachment=True)
|
| 363 |
+
#else:
|
| 364 |
+
# return jsonify({"error": "File not found."}), 404
|
| 365 |
+
|
| 366 |
+
def convert_voice_thread_safe(spk_id, vocal_path, voice_transform, unique_id):
|
| 367 |
+
with convert_voice_lock:
|
| 368 |
+
return convert_voice(spk_id, vocal_path, voice_transform, unique_id)
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def get_vc_safe(sid, to_return_protect0):
|
| 373 |
+
with convert_voice_lock:
|
| 374 |
+
return get_vc(sid, to_return_protect0)
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def get_processed_audio(audio_id):
|
| 379 |
+
# Retrieve the path from temporary storage or session
|
| 380 |
+
if audio_id in processed_audio_storage:
|
| 381 |
+
file_path = processed_audio_storage[audio_id]
|
| 382 |
+
return send_file(file_path, as_attachment=True)
|
| 383 |
+
return jsonify({"error": "File not found."}), 404
|
| 384 |
+
|
| 385 |
+
def worker(spk_id, input_audio_path, voice_transform, unique_id, output_queue):
|
| 386 |
+
try:
|
| 387 |
+
output_audio_path = convert_voice(spk_id, input_audio_path, voice_transform, unique_id)
|
| 388 |
+
print("output in worker for audio file", output_audio_path)
|
| 389 |
+
output_queue.put(output_audio_path)
|
| 390 |
+
print("added to output queue")
|
| 391 |
+
except Exception as e:
|
| 392 |
+
print("exception in adding to queue")
|
| 393 |
+
output_queue.put(e) # Send the exception to the main process for debugging
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
def convert_voice(spk_id, input_audio_path, voice_transform,unique_id):
|
| 397 |
+
get_vc(spk_id,0.5)
|
| 398 |
+
print("*****before makinf call to vc ", unique_id)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
output_audio_path = vc_single(
|
| 402 |
+
sid=0,
|
| 403 |
+
input_audio_path=input_audio_path,
|
| 404 |
+
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key
|
| 405 |
+
f0_file=None ,
|
| 406 |
+
f0_method="rmvpe",
|
| 407 |
+
file_index=spk_id, # Assuming file_index_path corresponds to file_index
|
| 408 |
+
index_rate=0.75,
|
| 409 |
+
filter_radius=3,
|
| 410 |
+
resample_sr=0,
|
| 411 |
+
rms_mix_rate=0.25,
|
| 412 |
+
protect=0.33, # Adjusted from protect_rate to protect to match the function signature,
|
| 413 |
+
unique_id=unique_id
|
| 414 |
+
)
|
| 415 |
+
print(output_audio_path)
|
| 416 |
+
return output_audio_path
|
| 417 |
+
|
| 418 |
+
def cut_vocal_and_inst(audio_path,spk_id,unique_id):
|
| 419 |
+
|
| 420 |
+
vocal_path = "output/result/audio.wav"
|
| 421 |
+
os.makedirs("output/result", exist_ok=True)
|
| 422 |
+
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
| 423 |
+
#logs.append("Starting the audio splitting process...")
|
| 424 |
+
#yield "\n".join(logs), None, None
|
| 425 |
+
print("before executing splitter")
|
| 426 |
+
command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output/{spk_id}_{unique_id}"
|
| 427 |
+
env = os.environ.copy()
|
| 428 |
+
|
| 429 |
+
# Add or modify the environment variable for this subprocess
|
| 430 |
+
env["CUDA_VISIBLE_DEVICES"] = "0"
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
#result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
| 435 |
+
result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
| 436 |
+
if result.returncode != 0:
|
| 437 |
+
print("Demucs process failed:", result.stderr)
|
| 438 |
+
else:
|
| 439 |
+
print("Demucs process completed successfully.")
|
| 440 |
+
print("after executing splitter")
|
| 441 |
+
#for line in result.stdout:
|
| 442 |
+
# logs.append(line)
|
| 443 |
+
# yield "\n".join(logs), None, None
|
| 444 |
+
|
| 445 |
+
print(result.stdout)
|
| 446 |
+
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
|
| 447 |
+
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
|
| 448 |
+
#logs.append("Audio splitting complete.")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def combine_vocal_and_inst(vocal_path, inst_path, output_path):
|
| 452 |
+
|
| 453 |
+
vocal_volume=1
|
| 454 |
+
inst_volume=1
|
| 455 |
+
os.makedirs("output/result", exist_ok=True)
|
| 456 |
+
# Assuming vocal_path and inst_path are now directly passed as arguments
|
| 457 |
+
output_path = f"output/result/{output_path}.mp3"
|
| 458 |
+
#command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
|
| 459 |
+
#command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
|
| 460 |
+
# Load the audio files
|
| 461 |
+
print(vocal_path)
|
| 462 |
+
print(inst_path)
|
| 463 |
+
vocal = AudioSegment.from_file(vocal_path)
|
| 464 |
+
instrumental = AudioSegment.from_file(inst_path)
|
| 465 |
+
|
| 466 |
+
# Overlay the vocal track on top of the instrumental track
|
| 467 |
+
combined = vocal.overlay(instrumental)
|
| 468 |
+
|
| 469 |
+
# Export the result
|
| 470 |
+
combined.export(output_path, format="mp3")
|
| 471 |
+
|
| 472 |
+
#result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 473 |
+
return output_path
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
def vc_single(
|
| 478 |
+
sid,
|
| 479 |
+
input_audio_path,
|
| 480 |
+
f0_up_key,
|
| 481 |
+
f0_file,
|
| 482 |
+
f0_method,
|
| 483 |
+
file_index,
|
| 484 |
+
index_rate,
|
| 485 |
+
filter_radius,
|
| 486 |
+
resample_sr,
|
| 487 |
+
rms_mix_rate,
|
| 488 |
+
protect,
|
| 489 |
+
unique_id
|
| 490 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
| 491 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
| 492 |
+
print("***** in vc ", unique_id)
|
| 493 |
+
|
| 494 |
+
try:
|
| 495 |
+
logs = []
|
| 496 |
+
print(f"Converting...")
|
| 497 |
+
|
| 498 |
+
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
|
| 499 |
+
print(f"found audio ")
|
| 500 |
+
f0_up_key = int(f0_up_key)
|
| 501 |
+
times = [0, 0, 0]
|
| 502 |
+
if hubert_model == None:
|
| 503 |
+
load_hubert()
|
| 504 |
+
print("loaded hubert")
|
| 505 |
+
if_f0 = 1
|
| 506 |
+
audio_opt = vc.pipeline(
|
| 507 |
+
hubert_model,
|
| 508 |
+
net_g,
|
| 509 |
+
0,
|
| 510 |
+
audio,
|
| 511 |
+
input_audio_path,
|
| 512 |
+
times,
|
| 513 |
+
f0_up_key,
|
| 514 |
+
f0_method,
|
| 515 |
+
file_index,
|
| 516 |
+
# file_big_npy,
|
| 517 |
+
index_rate,
|
| 518 |
+
if_f0,
|
| 519 |
+
filter_radius,
|
| 520 |
+
tgt_sr,
|
| 521 |
+
resample_sr,
|
| 522 |
+
rms_mix_rate,
|
| 523 |
+
version,
|
| 524 |
+
protect,
|
| 525 |
+
f0_file=f0_file
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
# Get the current thread's name or ID
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 534 |
+
tgt_sr = resample_sr
|
| 535 |
+
index_info = (
|
| 536 |
+
"Using index:%s." % file_index
|
| 537 |
+
if os.path.exists(file_index)
|
| 538 |
+
else "Index not used."
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
print("writing to FS")
|
| 542 |
+
#output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed
|
| 543 |
+
# Assuming 'unique_id' is passed to convert_voice function along with 'sid'
|
| 544 |
+
print("***** before writing to file outout ", unique_id)
|
| 545 |
+
output_file_path = os.path.join("output", f"converted_audio_{sid}_{unique_id}.wav") # Adjust path as needed
|
| 546 |
+
|
| 547 |
+
print("******* output file path ",output_file_path)
|
| 548 |
+
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist
|
| 549 |
+
print("create dir")
|
| 550 |
+
# Save the audio file using the target sampling rate
|
| 551 |
+
sf.write(output_file_path, audio_opt, tgt_sr)
|
| 552 |
+
|
| 553 |
+
print("wrote to FS")
|
| 554 |
+
|
| 555 |
+
# Return the path to the saved file along with any other information
|
| 556 |
+
|
| 557 |
+
return output_file_path
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
except:
|
| 561 |
+
info = traceback.format_exc()
|
| 562 |
+
|
| 563 |
+
return info, (None, None)
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
def get_vc(sid, to_return_protect0):
|
| 569 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
|
| 570 |
+
if sid == "" or sid == []:
|
| 571 |
+
global hubert_model
|
| 572 |
+
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
| 573 |
+
print("clean_empty_cache")
|
| 574 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
| 575 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
| 576 |
+
if torch.cuda.is_available():
|
| 577 |
+
torch.cuda.empty_cache()
|
| 578 |
+
###楼下不这么折腾清理不干净
|
| 579 |
+
if_f0 = cpt[sid].get("f0", 1)
|
| 580 |
+
version = cpt[sid].get("version", "v1")
|
| 581 |
+
if version == "v1":
|
| 582 |
+
if if_f0 == 1:
|
| 583 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
| 584 |
+
*cpt[sid]["config"], is_half=config.is_half
|
| 585 |
+
)
|
| 586 |
+
else:
|
| 587 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
|
| 588 |
+
elif version == "v2":
|
| 589 |
+
if if_f0 == 1:
|
| 590 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
| 591 |
+
*cpt[sid]["config"], is_half=config.is_half
|
| 592 |
+
)
|
| 593 |
+
else:
|
| 594 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
|
| 595 |
+
del net_g, cpt
|
| 596 |
+
if torch.cuda.is_available():
|
| 597 |
+
torch.cuda.empty_cache()
|
| 598 |
+
cpt = None
|
| 599 |
+
return (
|
| 600 |
+
gr.Slider.update(maximum=2333, visible=False),
|
| 601 |
+
gr.Slider.update(visible=True),
|
| 602 |
+
gr.Dropdown.update(choices=sorted(weights_index), value=""),
|
| 603 |
+
gr.Markdown.update(value="# <center> No model selected")
|
| 604 |
+
)
|
| 605 |
+
print(f"Loading {sid} model...")
|
| 606 |
+
selected_model = sid[:-4]
|
| 607 |
+
cpt[sid] = torch.load(os.path.join(weight_root, sid), map_location="cpu")
|
| 608 |
+
tgt_sr = cpt[sid]["config"][-1]
|
| 609 |
+
cpt[sid]["config"][-3] = cpt[sid]["weight"]["emb_g.weight"].shape[0]
|
| 610 |
+
if_f0 = cpt[sid].get("f0", 1)
|
| 611 |
+
if if_f0 == 0:
|
| 612 |
+
to_return_protect0 = {
|
| 613 |
+
"visible": False,
|
| 614 |
+
"value": 0.5,
|
| 615 |
+
"__type__": "update",
|
| 616 |
+
}
|
| 617 |
+
else:
|
| 618 |
+
to_return_protect0 = {
|
| 619 |
+
"visible": True,
|
| 620 |
+
"value": to_return_protect0,
|
| 621 |
+
"__type__": "update",
|
| 622 |
+
}
|
| 623 |
+
version = cpt[sid].get("version", "v1")
|
| 624 |
+
if version == "v1":
|
| 625 |
+
if if_f0 == 1:
|
| 626 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt[sid]["config"], is_half=config.is_half)
|
| 627 |
+
else:
|
| 628 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
|
| 629 |
+
elif version == "v2":
|
| 630 |
+
if if_f0 == 1:
|
| 631 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt[sid]["config"], is_half=config.is_half)
|
| 632 |
+
else:
|
| 633 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
|
| 634 |
+
del net_g.enc_q
|
| 635 |
+
print(net_g.load_state_dict(cpt[sid]["weight"], strict=False))
|
| 636 |
+
net_g.eval().to(config.device)
|
| 637 |
+
if config.is_half:
|
| 638 |
+
net_g = net_g.half()
|
| 639 |
+
else:
|
| 640 |
+
net_g = net_g.float()
|
| 641 |
+
vc = VC(tgt_sr, config)
|
| 642 |
+
n_spk = cpt[sid]["config"][-3]
|
| 643 |
+
weights_index = []
|
| 644 |
+
for _, _, index_files in os.walk(index_root):
|
| 645 |
+
for file in index_files:
|
| 646 |
+
if file.endswith('.index') and "trained" not in file:
|
| 647 |
+
weights_index.append(os.path.join(index_root, file))
|
| 648 |
+
if weights_index == []:
|
| 649 |
+
selected_index = gr.Dropdown.update(value="")
|
| 650 |
+
else:
|
| 651 |
+
selected_index = gr.Dropdown.update(value=weights_index[0])
|
| 652 |
+
for index, model_index in enumerate(weights_index):
|
| 653 |
+
if selected_model in model_index:
|
| 654 |
+
selected_index = gr.Dropdown.update(value=weights_index[index])
|
| 655 |
+
break
|
| 656 |
+
return (
|
| 657 |
+
gr.Slider.update(maximum=n_spk, visible=True),
|
| 658 |
+
to_return_protect0,
|
| 659 |
+
selected_index,
|
| 660 |
+
gr.Markdown.update(
|
| 661 |
+
f'## <center> {selected_model}\n'+
|
| 662 |
+
f'### <center> RVC {version} Model'
|
| 663 |
+
)
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
def handler(job):
|
| 669 |
+
job_input = job["input"] # Access the input from the request.
|
| 670 |
+
filename=job_input["filename"]
|
| 671 |
+
spk_id=job_input["spk_id"]
|
| 672 |
+
unique_id=job_input["unique_id"]
|
| 673 |
+
download_file(filename,"sing")
|
| 674 |
+
api_convert_voice(filename,spk_id,unique_id)
|
| 675 |
+
# Add your custom code here.
|
| 676 |
+
return "Your job results"
|
| 677 |
+
|
| 678 |
+
if __name__ == '__main__':
|
| 679 |
+
runpod.serverless.start({"handler": handler}) # Required.
|