stivenDR14
commited on
Commit
Β·
89e5d16
1
Parent(s):
fb513c1
30% managed
Browse files
agent.py
CHANGED
|
@@ -28,13 +28,17 @@ try:
|
|
| 28 |
from llama_index.core.agent.workflow import (
|
| 29 |
ToolCall,
|
| 30 |
ToolCallResult,
|
|
|
|
| 31 |
AgentStream,
|
| 32 |
)
|
| 33 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 34 |
from llama_index.core.tools import FunctionTool
|
| 35 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
| 36 |
from llama_index.tools.wikipedia import WikipediaToolSpec
|
| 37 |
-
from llama_index.tools.
|
|
|
|
|
|
|
|
|
|
| 38 |
LLAMA_INDEX_AVAILABLE = True
|
| 39 |
except ImportError as e:
|
| 40 |
print(f"LlamaIndex imports not available: {e}")
|
|
@@ -105,7 +109,6 @@ class BasicAgent:
|
|
| 105 |
|
| 106 |
# Get Hugging Face token
|
| 107 |
self.hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 108 |
-
print(self.hf_token)
|
| 109 |
if not self.hf_token:
|
| 110 |
print("Warning: HUGGINGFACE_TOKEN not found. Using default model.")
|
| 111 |
|
|
@@ -116,7 +119,7 @@ class BasicAgent:
|
|
| 116 |
self._initialize_tools()
|
| 117 |
|
| 118 |
# Initialize code executor
|
| 119 |
-
self._initialize_code_executor()
|
| 120 |
|
| 121 |
# Initialize CodeAct Agent
|
| 122 |
self._initialize_agent()
|
|
@@ -131,28 +134,17 @@ class BasicAgent:
|
|
| 131 |
return
|
| 132 |
|
| 133 |
try:
|
| 134 |
-
#
|
| 135 |
-
#
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
if self.hf_token:
|
| 140 |
-
# Use token if available
|
| 141 |
-
self.llm = HuggingFaceLLM(
|
| 142 |
-
model_name=MODEL,
|
| 143 |
-
tokenizer_name=MODEL, # Explicitly use the same model for tokenizer
|
| 144 |
-
model_kwargs=model_kwargs,
|
| 145 |
-
generate_kwargs=generate_kwargs,
|
| 146 |
-
tokenizer_kwargs={"token": self.hf_token},
|
| 147 |
-
)
|
| 148 |
-
else:
|
| 149 |
-
# Try without token for public models
|
| 150 |
-
self.llm = HuggingFaceLLM(
|
| 151 |
-
model_name=MODEL,
|
| 152 |
-
tokenizer_name=MODEL, # Explicitly use the same model for tokenizer
|
| 153 |
-
model_kwargs=model_kwargs,
|
| 154 |
-
generate_kwargs=generate_kwargs,
|
| 155 |
-
)
|
| 156 |
print("β
LLM initialized successfully")
|
| 157 |
except Exception as e:
|
| 158 |
print(f"Error initializing LLM: {e}")
|
|
@@ -203,16 +195,21 @@ class BasicAgent:
|
|
| 203 |
def calculate_percentage(value: float, percentage: float) -> float:
|
| 204 |
"""Calculate percentage of a value."""
|
| 205 |
return (value * percentage) / 100
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
# Create function tools
|
| 208 |
try:
|
| 209 |
math_tools = [
|
| 210 |
-
FunctionTool.from_defaults(fn=add_numbers),
|
| 211 |
-
FunctionTool.from_defaults(fn=subtract_numbers),
|
| 212 |
-
FunctionTool.from_defaults(fn=multiply_numbers),
|
| 213 |
-
FunctionTool.from_defaults(fn=divide_numbers),
|
| 214 |
-
FunctionTool.from_defaults(fn=power_numbers),
|
| 215 |
-
FunctionTool.from_defaults(fn=calculate_percentage),
|
|
|
|
| 216 |
]
|
| 217 |
self.tools.extend(math_tools)
|
| 218 |
print("β
Math tools initialized")
|
|
@@ -221,31 +218,33 @@ class BasicAgent:
|
|
| 221 |
|
| 222 |
# Initialize search tools
|
| 223 |
try:
|
| 224 |
-
#
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
|
|
|
| 228 |
print("β
DuckDuckGo search tool initialized")
|
| 229 |
except Exception as e:
|
| 230 |
print(f"Warning: Could not initialize DuckDuckGo tool: {e}")
|
| 231 |
|
| 232 |
-
try:
|
| 233 |
# Wikipedia search
|
| 234 |
wiki_spec = WikipediaToolSpec()
|
| 235 |
-
wiki_tools = wiki_spec.
|
| 236 |
self.tools.extend(wiki_tools)
|
| 237 |
print("β
Wikipedia tool initialized")
|
| 238 |
except Exception as e:
|
| 239 |
-
print(f"Warning: Could not initialize Wikipedia tool: {e}")
|
| 240 |
|
| 241 |
-
try:
|
| 242 |
# Web requests tool
|
| 243 |
requests_spec = RequestsToolSpec()
|
| 244 |
requests_tools = requests_spec.to_tool_list()
|
| 245 |
self.tools.extend(requests_tools)
|
| 246 |
print("β
Web requests tool initialized")
|
| 247 |
except Exception as e:
|
| 248 |
-
print(f"Warning: Could not initialize requests tool: {e}")
|
| 249 |
|
| 250 |
print(f"β
Total {len(self.tools)} tools initialized")
|
| 251 |
|
|
@@ -295,7 +294,7 @@ class BasicAgent:
|
|
| 295 |
|
| 296 |
# Store initialization parameters for deferred initialization
|
| 297 |
self._agent_params = {
|
| 298 |
-
'code_execute_fn': self.code_executor.execute,
|
| 299 |
'llm': self.llm,
|
| 300 |
'tools': self.tools
|
| 301 |
}
|
|
@@ -316,7 +315,21 @@ class BasicAgent:
|
|
| 316 |
pass
|
| 317 |
|
| 318 |
# Create the CodeAct Agent without assuming event loop state
|
| 319 |
-
self.agent = CodeActAgent(**self._agent_params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
print("β
CodeAct Agent initialized (deferred)")
|
| 321 |
|
| 322 |
except Exception as e:
|
|
@@ -334,29 +347,11 @@ class BasicAgent:
|
|
| 334 |
# Ensure agent is initialized (for deferred initialization)
|
| 335 |
self._ensure_agent_initialized()
|
| 336 |
|
| 337 |
-
|
| 338 |
-
enhanced_prompt = f"""
|
| 339 |
-
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 340 |
-
|
| 341 |
-
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 342 |
-
|
| 343 |
-
Available tools and capabilities:
|
| 344 |
-
- Mathematical calculations (addition, subtraction, multiplication, division, powers, percentages)
|
| 345 |
-
- Web search using DuckDuckGo
|
| 346 |
-
- Wikipedia search for factual information
|
| 347 |
-
- Web requests for API calls
|
| 348 |
-
- Code execution for complex calculations and data processing
|
| 349 |
-
- Python libraries: math, datetime, json, re, numpy (if available), pandas (if available)
|
| 350 |
-
|
| 351 |
-
Question: {question}
|
| 352 |
-
|
| 353 |
-
Think step by step, use the available tools when necessary, and provide your final answer in the specified format.
|
| 354 |
-
"""
|
| 355 |
-
|
| 356 |
if self.agent:
|
| 357 |
try:
|
| 358 |
# Use the CodeAct agent for advanced reasoning
|
| 359 |
-
response = await self._async_agent_run(
|
| 360 |
return response
|
| 361 |
except Exception as e:
|
| 362 |
print(f"Error with CodeAct agent: {e}")
|
|
@@ -365,24 +360,32 @@ Think step by step, use the available tools when necessary, and provide your fin
|
|
| 365 |
return "FINAL ANSWER: Agent not properly initialized"
|
| 366 |
|
| 367 |
|
| 368 |
-
async def _async_agent_run(self,
|
| 369 |
"""Run the agent asynchronously."""
|
| 370 |
try:
|
| 371 |
# Create a fresh context for this run to avoid loop conflicts
|
| 372 |
-
context = Context(self.agent)
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
| 375 |
async for event in handler.stream_events():
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
| 382 |
elif isinstance(event, AgentStream):
|
| 383 |
print(f"{event.delta}", end="", flush=True)
|
| 384 |
-
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
except Exception as e:
|
| 387 |
print(f"Async agent error: {e}")
|
| 388 |
return f"FINAL ANSWER: Error in agent processing - {str(e)}"
|
|
|
|
| 28 |
from llama_index.core.agent.workflow import (
|
| 29 |
ToolCall,
|
| 30 |
ToolCallResult,
|
| 31 |
+
FunctionAgent,
|
| 32 |
AgentStream,
|
| 33 |
)
|
| 34 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
| 35 |
from llama_index.core.tools import FunctionTool
|
| 36 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
| 37 |
from llama_index.tools.wikipedia import WikipediaToolSpec
|
| 38 |
+
from llama_index.tools.tavily_research.base import TavilyToolSpec
|
| 39 |
+
#from llama_index.llms.ollama import Ollama
|
| 40 |
+
from llama_index.llms.bedrock_converse import BedrockConverse
|
| 41 |
+
#from llama_index.llms.openai import OpenAI
|
| 42 |
LLAMA_INDEX_AVAILABLE = True
|
| 43 |
except ImportError as e:
|
| 44 |
print(f"LlamaIndex imports not available: {e}")
|
|
|
|
| 109 |
|
| 110 |
# Get Hugging Face token
|
| 111 |
self.hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
| 112 |
if not self.hf_token:
|
| 113 |
print("Warning: HUGGINGFACE_TOKEN not found. Using default model.")
|
| 114 |
|
|
|
|
| 119 |
self._initialize_tools()
|
| 120 |
|
| 121 |
# Initialize code executor
|
| 122 |
+
#self._initialize_code_executor()
|
| 123 |
|
| 124 |
# Initialize CodeAct Agent
|
| 125 |
self._initialize_agent()
|
|
|
|
| 134 |
return
|
| 135 |
|
| 136 |
try:
|
| 137 |
+
#self.llm = OpenAI(model="gpt-4o", api_key=os.getenv("OPENAI_API_KEY"))
|
| 138 |
+
#self.llm = Ollama(model="llama3.1:latest", base_url="http://localhost:11434")
|
| 139 |
+
self.llm = BedrockConverse(
|
| 140 |
+
model="amazon.nova-pro-v1:0",
|
| 141 |
+
temperature=0.5,
|
| 142 |
+
aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),
|
| 143 |
+
aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"),
|
| 144 |
+
region_name=os.getenv("AWS_REGION"),
|
| 145 |
+
|
| 146 |
+
)
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
print("β
LLM initialized successfully")
|
| 149 |
except Exception as e:
|
| 150 |
print(f"Error initializing LLM: {e}")
|
|
|
|
| 195 |
def calculate_percentage(value: float, percentage: float) -> float:
|
| 196 |
"""Calculate percentage of a value."""
|
| 197 |
return (value * percentage) / 100
|
| 198 |
+
|
| 199 |
+
def get_modulus(a: float, b: float) -> float:
|
| 200 |
+
"""Get the modulus of two numbers."""
|
| 201 |
+
return a % b
|
| 202 |
|
| 203 |
# Create function tools
|
| 204 |
try:
|
| 205 |
math_tools = [
|
| 206 |
+
FunctionTool.from_defaults(fn=add_numbers, name="add_numbers", description="Add two numbers together"),
|
| 207 |
+
FunctionTool.from_defaults(fn=subtract_numbers, name="subtract_numbers", description="Subtract second number from first number"),
|
| 208 |
+
FunctionTool.from_defaults(fn=multiply_numbers, name="multiply_numbers", description="Multiply two numbers"),
|
| 209 |
+
FunctionTool.from_defaults(fn=divide_numbers, name="divide_numbers", description="Divide first number by second number"),
|
| 210 |
+
FunctionTool.from_defaults(fn=power_numbers, name="power_numbers", description="Raise first number to the power of second number"),
|
| 211 |
+
FunctionTool.from_defaults(fn=calculate_percentage, name="calculate_percentage", description="Calculate percentage of a value"),
|
| 212 |
+
FunctionTool.from_defaults(fn=get_modulus, name="get_modulus", description="Get the modulus of two numbers"),
|
| 213 |
]
|
| 214 |
self.tools.extend(math_tools)
|
| 215 |
print("β
Math tools initialized")
|
|
|
|
| 218 |
|
| 219 |
# Initialize search tools
|
| 220 |
try:
|
| 221 |
+
# web search
|
| 222 |
+
search_spec = TavilyToolSpec(
|
| 223 |
+
api_key=os.getenv("TAVILY_API_KEY"),
|
| 224 |
+
)
|
| 225 |
+
search_tool = search_spec.to_tool_list()
|
| 226 |
+
self.tools.extend(search_tool)
|
| 227 |
print("β
DuckDuckGo search tool initialized")
|
| 228 |
except Exception as e:
|
| 229 |
print(f"Warning: Could not initialize DuckDuckGo tool: {e}")
|
| 230 |
|
| 231 |
+
""" try:
|
| 232 |
# Wikipedia search
|
| 233 |
wiki_spec = WikipediaToolSpec()
|
| 234 |
+
wiki_tools = FunctionTool.from_defaults(wiki_spec.wikipedia_search, name="wikipedia_search", description="Search Wikipedia for information")
|
| 235 |
self.tools.extend(wiki_tools)
|
| 236 |
print("β
Wikipedia tool initialized")
|
| 237 |
except Exception as e:
|
| 238 |
+
print(f"Warning: Could not initialize Wikipedia tool: {e}") """
|
| 239 |
|
| 240 |
+
""" try:
|
| 241 |
# Web requests tool
|
| 242 |
requests_spec = RequestsToolSpec()
|
| 243 |
requests_tools = requests_spec.to_tool_list()
|
| 244 |
self.tools.extend(requests_tools)
|
| 245 |
print("β
Web requests tool initialized")
|
| 246 |
except Exception as e:
|
| 247 |
+
print(f"Warning: Could not initialize requests tool: {e}") """
|
| 248 |
|
| 249 |
print(f"β
Total {len(self.tools)} tools initialized")
|
| 250 |
|
|
|
|
| 294 |
|
| 295 |
# Store initialization parameters for deferred initialization
|
| 296 |
self._agent_params = {
|
| 297 |
+
#'code_execute_fn': self.code_executor.execute,
|
| 298 |
'llm': self.llm,
|
| 299 |
'tools': self.tools
|
| 300 |
}
|
|
|
|
| 315 |
pass
|
| 316 |
|
| 317 |
# Create the CodeAct Agent without assuming event loop state
|
| 318 |
+
#self.agent = CodeActAgent(**self._agent_params)
|
| 319 |
+
# Enhanced prompt with specific formatting requirements
|
| 320 |
+
enhanced_prompt = f"""
|
| 321 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
| 322 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
| 323 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 324 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 325 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
self.agent = FunctionAgent(
|
| 329 |
+
tools=self.tools,
|
| 330 |
+
llm=self.llm,
|
| 331 |
+
system_prompt=enhanced_prompt,
|
| 332 |
+
)
|
| 333 |
print("β
CodeAct Agent initialized (deferred)")
|
| 334 |
|
| 335 |
except Exception as e:
|
|
|
|
| 347 |
# Ensure agent is initialized (for deferred initialization)
|
| 348 |
self._ensure_agent_initialized()
|
| 349 |
|
| 350 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
if self.agent:
|
| 352 |
try:
|
| 353 |
# Use the CodeAct agent for advanced reasoning
|
| 354 |
+
response = await self._async_agent_run(question)
|
| 355 |
return response
|
| 356 |
except Exception as e:
|
| 357 |
print(f"Error with CodeAct agent: {e}")
|
|
|
|
| 360 |
return "FINAL ANSWER: Agent not properly initialized"
|
| 361 |
|
| 362 |
|
| 363 |
+
async def _async_agent_run(self, question: str) -> str:
|
| 364 |
"""Run the agent asynchronously."""
|
| 365 |
try:
|
| 366 |
# Create a fresh context for this run to avoid loop conflicts
|
| 367 |
+
#context = Context(self.agent)
|
| 368 |
+
print("Agent running...")
|
| 369 |
+
print(self.agent)
|
| 370 |
+
handler = self.agent.run(question)
|
| 371 |
+
#return str(handler)
|
| 372 |
+
iterationsNumber = 0
|
| 373 |
async for event in handler.stream_events():
|
| 374 |
+
iterationsNumber += 1
|
| 375 |
+
# if isinstance(event, ToolCallResult):
|
| 376 |
+
# print(
|
| 377 |
+
# f"\n-----------\nCode execution result:\n{event.tool_output}"
|
| 378 |
+
# )
|
| 379 |
+
if isinstance(event, ToolCall):
|
| 380 |
+
print(f"\n-----------\nevent:\n{event}")
|
| 381 |
elif isinstance(event, AgentStream):
|
| 382 |
print(f"{event.delta}", end="", flush=True)
|
| 383 |
+
""" if iterationsNumber > 5:
|
| 384 |
+
print("Too many iterations, stopping...")
|
| 385 |
+
break """
|
| 386 |
+
response = await handler
|
| 387 |
+
print(f'response.response: {response.response.content}')
|
| 388 |
+
return response.response.content.split("FINAL ANSWER: ")[1]
|
| 389 |
except Exception as e:
|
| 390 |
print(f"Async agent error: {e}")
|
| 391 |
return f"FINAL ANSWER: Error in agent processing - {str(e)}"
|
app.py
CHANGED
|
@@ -75,15 +75,19 @@ async def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
|
|
| 75 |
results_log = []
|
| 76 |
answers_payload = []
|
| 77 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 78 |
-
questions_data = questions_data[:
|
| 79 |
for item in questions_data:
|
| 80 |
task_id = item.get("task_id")
|
| 81 |
question_text = item.get("question")
|
|
|
|
| 82 |
if not task_id or question_text is None:
|
| 83 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 84 |
continue
|
| 85 |
try:
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 88 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 89 |
except Exception as e:
|
|
|
|
| 75 |
results_log = []
|
| 76 |
answers_payload = []
|
| 77 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 78 |
+
#questions_data = questions_data[:5]
|
| 79 |
for item in questions_data:
|
| 80 |
task_id = item.get("task_id")
|
| 81 |
question_text = item.get("question")
|
| 82 |
+
print(f"Running agent on question: {item}")
|
| 83 |
if not task_id or question_text is None:
|
| 84 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 85 |
continue
|
| 86 |
try:
|
| 87 |
+
if(item.get("file_name") != ""):
|
| 88 |
+
submitted_answer = "N.D."
|
| 89 |
+
else:
|
| 90 |
+
submitted_answer = await agent(question_text)
|
| 91 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 92 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 93 |
except Exception as e:
|