Spaces:
Runtime error
Runtime error
| # %BANNER_BEGIN% | |
| # --------------------------------------------------------------------- | |
| # %COPYRIGHT_BEGIN% | |
| # | |
| # Magic Leap, Inc. ("COMPANY") CONFIDENTIAL | |
| # | |
| # Unpublished Copyright (c) 2020 | |
| # Magic Leap, Inc., All Rights Reserved. | |
| # | |
| # NOTICE: All information contained herein is, and remains the property | |
| # of COMPANY. The intellectual and technical concepts contained herein | |
| # are proprietary to COMPANY and may be covered by U.S. and Foreign | |
| # Patents, patents in process, and are protected by trade secret or | |
| # copyright law. Dissemination of this information or reproduction of | |
| # this material is strictly forbidden unless prior written permission is | |
| # obtained from COMPANY. Access to the source code contained herein is | |
| # hereby forbidden to anyone except current COMPANY employees, managers | |
| # or contractors who have executed Confidentiality and Non-disclosure | |
| # agreements explicitly covering such access. | |
| # | |
| # The copyright notice above does not evidence any actual or intended | |
| # publication or disclosure of this source code, which includes | |
| # information that is confidential and/or proprietary, and is a trade | |
| # secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, | |
| # PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS | |
| # SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS | |
| # STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND | |
| # INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE | |
| # CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS | |
| # TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, | |
| # USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. | |
| # | |
| # %COPYRIGHT_END% | |
| # ---------------------------------------------------------------------- | |
| # %AUTHORS_BEGIN% | |
| # | |
| # Originating Authors: Paul-Edouard Sarlin | |
| # | |
| # %AUTHORS_END% | |
| # --------------------------------------------------------------------*/ | |
| # %BANNER_END% | |
| from pathlib import Path | |
| import torch | |
| from torch import nn | |
| import numpy as np | |
| import cv2 | |
| import torch.nn.functional as F | |
| def simple_nms(scores, nms_radius: int): | |
| """ Fast Non-maximum suppression to remove nearby points """ | |
| assert (nms_radius >= 0) | |
| def max_pool(x): | |
| return torch.nn.functional.max_pool2d( | |
| x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius) | |
| zeros = torch.zeros_like(scores) | |
| max_mask = scores == max_pool(scores) | |
| for _ in range(2): | |
| supp_mask = max_pool(max_mask.float()) > 0 | |
| supp_scores = torch.where(supp_mask, zeros, scores) | |
| new_max_mask = supp_scores == max_pool(supp_scores) | |
| max_mask = max_mask | (new_max_mask & (~supp_mask)) | |
| return torch.where(max_mask, scores, zeros) | |
| def remove_borders(keypoints, scores, border: int, height: int, width: int): | |
| """ Removes keypoints too close to the border """ | |
| mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) | |
| mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) | |
| mask = mask_h & mask_w | |
| return keypoints[mask], scores[mask] | |
| def top_k_keypoints(keypoints, scores, k: int): | |
| if k >= len(keypoints): | |
| return keypoints, scores | |
| scores, indices = torch.topk(scores, k, dim=0) | |
| return keypoints[indices], scores | |
| def sample_descriptors(keypoints, descriptors, s: int = 8): | |
| """ Interpolate descriptors at keypoint locations """ | |
| b, c, h, w = descriptors.shape | |
| keypoints = keypoints - s / 2 + 0.5 | |
| keypoints /= torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)], | |
| ).to(keypoints)[None] | |
| keypoints = keypoints * 2 - 1 # normalize to (-1, 1) | |
| args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {} | |
| descriptors = torch.nn.functional.grid_sample( | |
| descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args) | |
| descriptors = torch.nn.functional.normalize( | |
| descriptors.reshape(b, c, -1), p=2, dim=1) | |
| return descriptors | |
| class SuperPoint(nn.Module): | |
| """SuperPoint Convolutional Detector and Descriptor | |
| SuperPoint: Self-Supervised Interest Point Detection and | |
| Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew | |
| Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629 | |
| """ | |
| default_config = { | |
| 'descriptor_dim': 256, | |
| 'nms_radius': 3, | |
| 'keypoint_threshold': 0.001, | |
| 'max_keypoints': -1, | |
| 'min_keypoints': 32, | |
| 'remove_borders': 4, | |
| } | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = {**self.default_config, **config} | |
| self.relu = nn.ReLU(inplace=True) | |
| self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
| c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256 | |
| self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1) | |
| self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) # 64 | |
| self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) | |
| self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) # 64 | |
| self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) | |
| self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) # 128 | |
| self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) | |
| self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) # 128 | |
| self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) # 256 | |
| self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) | |
| self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) # 256 | |
| self.convDb = nn.Conv2d( | |
| c5, self.config['descriptor_dim'], | |
| kernel_size=1, stride=1, padding=0) | |
| # path = Path(__file__).parent / 'weights/superpoint_v1.pth' | |
| path = config['weight_path'] | |
| self.load_state_dict(torch.load(str(path), map_location='cpu'), strict=True) | |
| mk = self.config['max_keypoints'] | |
| if mk == 0 or mk < -1: | |
| raise ValueError('\"max_keypoints\" must be positive or \"-1\"') | |
| print('Loaded SuperPoint model') | |
| def extract_global(self, data): | |
| # Shared Encoder | |
| x0 = self.relu(self.conv1a(data['image'])) | |
| x0 = self.relu(self.conv1b(x0)) | |
| x0 = self.pool(x0) | |
| x1 = self.relu(self.conv2a(x0)) | |
| x1 = self.relu(self.conv2b(x1)) | |
| x1 = self.pool(x1) | |
| x2 = self.relu(self.conv3a(x1)) | |
| x2 = self.relu(self.conv3b(x2)) | |
| x2 = self.pool(x2) | |
| x3 = self.relu(self.conv4a(x2)) | |
| x3 = self.relu(self.conv4b(x3)) | |
| x4 = self.relu(self.convDa(x3)) | |
| # print('ex_g: ', x0.shape, x1.shape, x2.shape, x3.shape, x4.shape) | |
| return [x0, x1, x2, x3, x4] | |
| def extract_local_global(self, data): | |
| # Shared Encoder | |
| b, ic, ih, iw = data['image'].shape | |
| x0 = self.relu(self.conv1a(data['image'])) | |
| x0 = self.relu(self.conv1b(x0)) | |
| x0 = self.pool(x0) | |
| x1 = self.relu(self.conv2a(x0)) | |
| x1 = self.relu(self.conv2b(x1)) | |
| x1 = self.pool(x1) | |
| x2 = self.relu(self.conv3a(x1)) | |
| x2 = self.relu(self.conv3b(x2)) | |
| x2 = self.pool(x2) | |
| x3 = self.relu(self.conv4a(x2)) | |
| x3 = self.relu(self.conv4b(x3)) | |
| # Compute the dense keypoint scores | |
| cPa = self.relu(self.convPa(x3)) | |
| score = self.convPb(cPa) | |
| score = torch.nn.functional.softmax(score, 1)[:, :-1] | |
| # print(scores.shape) | |
| b, _, h, w = score.shape | |
| score = score.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) | |
| score = score.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) | |
| score = torch.nn.functional.interpolate(score.unsqueeze(1), size=(ih, iw), align_corners=True, | |
| mode='bilinear') | |
| score = score.squeeze(1) | |
| # extract kpts | |
| nms_scores = simple_nms(scores=score, nms_radius=self.config['nms_radius']) | |
| keypoints = [ | |
| torch.nonzero(s >= self.config['keypoint_threshold']) | |
| for s in nms_scores] | |
| scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)] | |
| if len(scores[0]) <= self.config['min_keypoints']: | |
| keypoints = [ | |
| torch.nonzero(s >= self.config['keypoint_threshold'] * 0.5) | |
| for s in nms_scores] | |
| scores = [s[tuple(k.t())] for s, k in zip(nms_scores, keypoints)] | |
| # Discard keypoints near the image borders | |
| keypoints, scores = list(zip(*[ | |
| remove_borders(k, s, self.config['remove_borders'], ih, iw) | |
| for k, s in zip(keypoints, scores)])) | |
| # Keep the k keypoints with the highest score | |
| if self.config['max_keypoints'] >= 0: | |
| keypoints, scores = list(zip(*[ | |
| top_k_keypoints(k, s, self.config['max_keypoints']) | |
| for k, s in zip(keypoints, scores)])) | |
| # Convert (h, w) to (x, y) | |
| keypoints = [torch.flip(k, [1]).float() for k in keypoints] | |
| # Compute the dense descriptors | |
| cDa = self.relu(self.convDa(x3)) | |
| desc_map = self.convDb(cDa) | |
| desc_map = torch.nn.functional.normalize(desc_map, p=2, dim=1) | |
| descriptors = [sample_descriptors(k[None], d[None], 8)[0] | |
| for k, d in zip(keypoints, desc_map)] | |
| return { | |
| 'score_map': score, | |
| 'desc_map': desc_map, | |
| 'mid_features': cDa, # 256 | |
| 'global_descriptors': [x0, x1, x2, x3, cDa], | |
| 'keypoints': keypoints, | |
| 'scores': scores, | |
| 'descriptors': descriptors, | |
| } | |
| def sample(self, score_map, semi_descs, kpts, s=8, norm_desc=True): | |
| # print('sample: ', score_map.shape, semi_descs.shape, kpts.shape) | |
| b, c, h, w = semi_descs.shape | |
| norm_kpts = kpts - s / 2 + 0.5 | |
| norm_kpts = norm_kpts / torch.tensor([(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)], | |
| ).to(norm_kpts)[None] | |
| norm_kpts = norm_kpts * 2 - 1 | |
| # args = {'align_corners': True} if int(torch.__version__[2]) > 2 else {} | |
| descriptors = torch.nn.functional.grid_sample( | |
| semi_descs, norm_kpts.view(b, 1, -1, 2), mode='bilinear', align_corners=True) | |
| if norm_desc: | |
| descriptors = torch.nn.functional.normalize( | |
| descriptors.reshape(b, c, -1), p=2, dim=1) | |
| else: | |
| descriptors = descriptors.reshape(b, c, -1) | |
| # print('max: ', torch.min(kpts[:, 1].long()), torch.max(kpts[:, 1].long()), torch.min(kpts[:, 0].long()), | |
| # torch.max(kpts[:, 0].long())) | |
| scores = score_map[0, kpts[:, 1].long(), kpts[:, 0].long()] | |
| return scores, descriptors.squeeze(0) | |
| def extract(self, data): | |
| """ Compute keypoints, scores, descriptors for image """ | |
| # Shared Encoder | |
| x = self.relu(self.conv1a(data['image'])) | |
| x = self.relu(self.conv1b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv2a(x)) | |
| x = self.relu(self.conv2b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv3a(x)) | |
| x = self.relu(self.conv3b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv4a(x)) | |
| x = self.relu(self.conv4b(x)) | |
| # Compute the dense keypoint scores | |
| cPa = self.relu(self.convPa(x)) | |
| scores = self.convPb(cPa) | |
| scores = torch.nn.functional.softmax(scores, 1)[:, :-1] | |
| b, _, h, w = scores.shape | |
| scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) | |
| scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) | |
| # Compute the dense descriptors | |
| cDa = self.relu(self.convDa(x)) | |
| descriptors = self.convDb(cDa) | |
| descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) | |
| return scores, descriptors | |
| def det(self, image): | |
| """ Compute keypoints, scores, descriptors for image """ | |
| # Shared Encoder | |
| x = self.relu(self.conv1a(image)) | |
| x = self.relu(self.conv1b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv2a(x)) | |
| x = self.relu(self.conv2b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv3a(x)) | |
| x = self.relu(self.conv3b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv4a(x)) | |
| x = self.relu(self.conv4b(x)) | |
| # Compute the dense keypoint scores | |
| cPa = self.relu(self.convPa(x)) | |
| scores = self.convPb(cPa) | |
| scores = torch.nn.functional.softmax(scores, 1)[:, :-1] | |
| # print(scores.shape) | |
| b, _, h, w = scores.shape | |
| scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) | |
| scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) | |
| # Compute the dense descriptors | |
| cDa = self.relu(self.convDa(x)) | |
| descriptors = self.convDb(cDa) | |
| descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) | |
| return scores, descriptors | |
| def forward(self, data): | |
| """ Compute keypoints, scores, descriptors for image """ | |
| # Shared Encoder | |
| x = self.relu(self.conv1a(data['image'])) | |
| x = self.relu(self.conv1b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv2a(x)) | |
| x = self.relu(self.conv2b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv3a(x)) | |
| x = self.relu(self.conv3b(x)) | |
| x = self.pool(x) | |
| x = self.relu(self.conv4a(x)) | |
| x = self.relu(self.conv4b(x)) | |
| # Compute the dense keypoint scores | |
| cPa = self.relu(self.convPa(x)) | |
| scores = self.convPb(cPa) | |
| scores = torch.nn.functional.softmax(scores, 1)[:, :-1] | |
| # print(scores.shape) | |
| b, _, h, w = scores.shape | |
| scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) | |
| scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8) | |
| scores = simple_nms(scores, self.config['nms_radius']) | |
| # Extract keypoints | |
| keypoints = [ | |
| torch.nonzero(s > self.config['keypoint_threshold']) | |
| for s in scores] | |
| scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] | |
| # Discard keypoints near the image borders | |
| keypoints, scores = list(zip(*[ | |
| remove_borders(k, s, self.config['remove_borders'], h * 8, w * 8) | |
| for k, s in zip(keypoints, scores)])) | |
| # Keep the k keypoints with highest score | |
| if self.config['max_keypoints'] >= 0: | |
| keypoints, scores = list(zip(*[ | |
| top_k_keypoints(k, s, self.config['max_keypoints']) | |
| for k, s in zip(keypoints, scores)])) | |
| # Convert (h, w) to (x, y) | |
| keypoints = [torch.flip(k, [1]).float() for k in keypoints] | |
| # Compute the dense descriptors | |
| cDa = self.relu(self.convDa(x)) | |
| descriptors = self.convDb(cDa) | |
| descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) | |
| # Extract descriptors | |
| # print(keypoints[0].shape) | |
| descriptors = [sample_descriptors(k[None], d[None], 8)[0] | |
| for k, d in zip(keypoints, descriptors)] | |
| return { | |
| 'keypoints': keypoints, | |
| 'scores': scores, | |
| 'descriptors': descriptors, | |
| 'global_descriptor': x, | |
| } | |
| def extract_descriptor(sample_pts, coarse_desc, H, W): | |
| ''' | |
| :param samplt_pts: | |
| :param coarse_desc: | |
| :return: | |
| ''' | |
| with torch.no_grad(): | |
| norm_sample_pts = torch.zeros_like(sample_pts) | |
| norm_sample_pts[0, :] = (sample_pts[0, :] / (float(W) / 2.)) - 1. # x | |
| norm_sample_pts[1, :] = (sample_pts[1, :] / (float(H) / 2.)) - 1. # y | |
| norm_sample_pts = norm_sample_pts.transpose(0, 1).contiguous() | |
| norm_sample_pts = norm_sample_pts.view(1, 1, -1, 2).float() | |
| sample_desc = torch.nn.functional.grid_sample(coarse_desc[None], norm_sample_pts, mode='bilinear', | |
| align_corners=False) | |
| sample_desc = torch.nn.functional.normalize(sample_desc, dim=1).squeeze(2).squeeze(0) | |
| return sample_desc | |
| def extract_sp_return(model, img, conf_th=0.005, | |
| mask=None, | |
| topK=-1, | |
| **kwargs): | |
| old_bm = torch.backends.cudnn.benchmark | |
| torch.backends.cudnn.benchmark = False # speedup | |
| # print(img.shape) | |
| img = img.cuda() | |
| # if len(img.shape) == 3: # gray image | |
| # img = img[None] | |
| B, one, H, W = img.shape | |
| all_pts = [] | |
| all_descs = [] | |
| if 'scales' in kwargs.keys(): | |
| scales = kwargs.get('scales') | |
| else: | |
| scales = [1.0] | |
| for s in scales: | |
| if s == 1.0: | |
| new_img = img | |
| else: | |
| nh = int(H * s) | |
| nw = int(W * s) | |
| new_img = F.interpolate(img, size=(nh, nw), mode='bilinear', align_corners=True) | |
| nh, nw = new_img.shape[2:] | |
| with torch.no_grad(): | |
| heatmap, coarse_desc = model.det(new_img) | |
| # print("nh, nw, heatmap, desc: ", nh, nw, heatmap.shape, coarse_desc.shape) | |
| if len(heatmap.size()) == 3: | |
| heatmap = heatmap.unsqueeze(1) | |
| if len(heatmap.size()) == 2: | |
| heatmap = heatmap.unsqueeze(0) | |
| heatmap = heatmap.unsqueeze(1) | |
| # print(heatmap.shape) | |
| if heatmap.size(2) != nh or heatmap.size(3) != nw: | |
| heatmap = F.interpolate(heatmap, size=[nh, nw], mode='bilinear', align_corners=True) | |
| conf_thresh = conf_th | |
| nms_dist = 4 | |
| border_remove = 4 | |
| scores = simple_nms(heatmap, nms_radius=nms_dist) | |
| keypoints = [ | |
| torch.nonzero(s > conf_thresh) | |
| for s in scores] | |
| scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] | |
| # print(keypoints[0].shape) | |
| keypoints = [torch.flip(k, [1]).float() for k in keypoints] | |
| scores = scores[0].data.cpu().numpy().squeeze() | |
| keypoints = keypoints[0].data.cpu().numpy().squeeze() | |
| pts = keypoints.transpose() | |
| pts[2, :] = scores | |
| inds = np.argsort(pts[2, :]) | |
| pts = pts[:, inds[::-1]] # Sort by confidence. | |
| # Remove points along border. | |
| bord = border_remove | |
| toremoveW = np.logical_or(pts[0, :] < bord, pts[0, :] >= (W - bord)) | |
| toremoveH = np.logical_or(pts[1, :] < bord, pts[1, :] >= (H - bord)) | |
| toremove = np.logical_or(toremoveW, toremoveH) | |
| pts = pts[:, ~toremove] | |
| # valid_idex = heatmap > conf_thresh | |
| # valid_score = heatmap[valid_idex] | |
| # """ | |
| # --- Process descriptor. | |
| # coarse_desc = coarse_desc.data.cpu().numpy().squeeze() | |
| D = coarse_desc.size(1) | |
| if pts.shape[1] == 0: | |
| desc = np.zeros((D, 0)) | |
| else: | |
| if coarse_desc.size(2) == nh and coarse_desc.size(3) == nw: | |
| desc = coarse_desc[:, :, pts[1, :], pts[0, :]] | |
| desc = desc.data.cpu().numpy().reshape(D, -1) | |
| else: | |
| # Interpolate into descriptor map using 2D point locations. | |
| samp_pts = torch.from_numpy(pts[:2, :].copy()) | |
| samp_pts[0, :] = (samp_pts[0, :] / (float(nw) / 2.)) - 1. | |
| samp_pts[1, :] = (samp_pts[1, :] / (float(nh) / 2.)) - 1. | |
| samp_pts = samp_pts.transpose(0, 1).contiguous() | |
| samp_pts = samp_pts.view(1, 1, -1, 2) | |
| samp_pts = samp_pts.float() | |
| samp_pts = samp_pts.cuda() | |
| desc = torch.nn.functional.grid_sample(coarse_desc, samp_pts, mode='bilinear', align_corners=True) | |
| desc = desc.data.cpu().numpy().reshape(D, -1) | |
| desc /= np.linalg.norm(desc, axis=0)[np.newaxis, :] | |
| if pts.shape[1] == 0: | |
| continue | |
| # print(pts.shape, heatmap.shape, new_img.shape, img.shape, nw, nh, W, H) | |
| pts[0, :] = pts[0, :] * W / nw | |
| pts[1, :] = pts[1, :] * H / nh | |
| all_pts.append(np.transpose(pts, [1, 0])) | |
| all_descs.append(np.transpose(desc, [1, 0])) | |
| all_pts = np.vstack(all_pts) | |
| all_descs = np.vstack(all_descs) | |
| torch.backends.cudnn.benchmark = old_bm | |
| if all_pts.shape[0] == 0: | |
| return None, None, None | |
| keypoints = all_pts[:, 0:2] | |
| scores = all_pts[:, 2] | |
| descriptors = all_descs | |
| if mask is not None: | |
| # cv2.imshow("mask", mask) | |
| # cv2.waitKey(0) | |
| labels = [] | |
| others = [] | |
| keypoints_with_labels = [] | |
| scores_with_labels = [] | |
| descriptors_with_labels = [] | |
| keypoints_without_labels = [] | |
| scores_without_labels = [] | |
| descriptors_without_labels = [] | |
| id_img = np.int32(mask[:, :, 2]) * 256 * 256 + np.int32(mask[:, :, 1]) * 256 + np.int32(mask[:, :, 0]) | |
| # print(img.shape, id_img.shape) | |
| for i in range(keypoints.shape[0]): | |
| x = keypoints[i, 0] | |
| y = keypoints[i, 1] | |
| # print("x-y", x, y, int(x), int(y)) | |
| gid = id_img[int(y), int(x)] | |
| if gid == 0: | |
| keypoints_without_labels.append(keypoints[i]) | |
| scores_without_labels.append(scores[i]) | |
| descriptors_without_labels.append(descriptors[i]) | |
| others.append(0) | |
| else: | |
| keypoints_with_labels.append(keypoints[i]) | |
| scores_with_labels.append(scores[i]) | |
| descriptors_with_labels.append(descriptors[i]) | |
| labels.append(gid) | |
| if topK > 0: | |
| if topK <= len(keypoints_with_labels): | |
| idxes = np.array(scores_with_labels, float).argsort()[::-1][:topK] | |
| keypoints = np.array(keypoints_with_labels, float)[idxes] | |
| scores = np.array(scores_with_labels, float)[idxes] | |
| labels = np.array(labels, np.int32)[idxes] | |
| descriptors = np.array(descriptors_with_labels, float)[idxes] | |
| elif topK >= len(keypoints_with_labels) + len(keypoints_without_labels): | |
| # keypoints = np.vstack([keypoints_with_labels, keypoints_without_labels]) | |
| # scores = np.vstack([scorescc_with_labels, scores_without_labels]) | |
| # descriptors = np.vstack([descriptors_with_labels, descriptors_without_labels]) | |
| # labels = np.vstack([labels, others]) | |
| keypoints = keypoints_with_labels | |
| scores = scores_with_labels | |
| descriptors = descriptors_with_labels | |
| for i in range(len(others)): | |
| keypoints.append(keypoints_without_labels[i]) | |
| scores.append(scores_without_labels[i]) | |
| descriptors.append(descriptors_without_labels[i]) | |
| labels.append(others[i]) | |
| else: | |
| n = topK - len(keypoints_with_labels) | |
| idxes = np.array(scores_without_labels, float).argsort()[::-1][:n] | |
| keypoints = keypoints_with_labels | |
| scores = scores_with_labels | |
| descriptors = descriptors_with_labels | |
| for i in idxes: | |
| keypoints.append(keypoints_without_labels[i]) | |
| scores.append(scores_without_labels[i]) | |
| descriptors.append(descriptors_without_labels[i]) | |
| labels.append(others[i]) | |
| keypoints = np.array(keypoints, float) | |
| descriptors = np.array(descriptors, float) | |
| # print(keypoints.shape, descriptors.shape) | |
| return {"keypoints": np.array(keypoints, float), | |
| "descriptors": np.array(descriptors, float), | |
| "scores": np.array(scores, float), | |
| "labels": np.array(labels, np.int32), | |
| } | |
| else: | |
| # print(topK) | |
| if topK > 0: | |
| idxes = np.array(scores, dtype=float).argsort()[::-1][:topK] | |
| keypoints = np.array(keypoints[idxes], dtype=float) | |
| scores = np.array(scores[idxes], dtype=float) | |
| descriptors = np.array(descriptors[idxes], dtype=float) | |
| keypoints = np.array(keypoints, dtype=float) | |
| scores = np.array(scores, dtype=float) | |
| descriptors = np.array(descriptors, dtype=float) | |
| # print(keypoints.shape, descriptors.shape) | |
| return {"keypoints": np.array(keypoints, dtype=float), | |
| "descriptors": descriptors, | |
| "scores": scores, | |
| } | |