Spaces:
Build error
Build error
Achyut Tiwari
commited on
Add files via upload
Browse files- lfqa_server/Dockerfile +19 -0
- lfqa_server/__init__.py +0 -0
- lfqa_server/main.py +130 -0
- lfqa_server/requirements.txt +7 -0
lfqa_server/Dockerfile
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM nvidia/cuda:11.2.2-runtime-ubuntu20.04
|
| 2 |
+
#set up environment
|
| 3 |
+
RUN apt-get update && apt-get install --no-install-recommends --no-install-suggests -y curl
|
| 4 |
+
RUN apt-get install unzip
|
| 5 |
+
RUN apt-get -y install python3
|
| 6 |
+
RUN apt-get -y install python3-pip
|
| 7 |
+
|
| 8 |
+
WORKDIR /code
|
| 9 |
+
|
| 10 |
+
ENV HF_HOME=/code/cache
|
| 11 |
+
|
| 12 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 13 |
+
|
| 14 |
+
RUN pip3 install torch==1.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
| 15 |
+
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 16 |
+
|
| 17 |
+
COPY ./main.py /code/app/main.py
|
| 18 |
+
|
| 19 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8080"]
|
lfqa_server/__init__.py
ADDED
|
File without changes
|
lfqa_server/main.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from fastapi import FastAPI, Depends, status
|
| 3 |
+
from fastapi.responses import PlainTextResponse
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
|
| 7 |
+
import time
|
| 8 |
+
from typing import Dict, List, Optional
|
| 9 |
+
|
| 10 |
+
import jwt
|
| 11 |
+
from decouple import config
|
| 12 |
+
from fastapi import Request, HTTPException
|
| 13 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 14 |
+
|
| 15 |
+
JWT_SECRET = config("secret")
|
| 16 |
+
JWT_ALGORITHM = config("algorithm")
|
| 17 |
+
|
| 18 |
+
app = FastAPI()
|
| 19 |
+
app.ready = False
|
| 20 |
+
|
| 21 |
+
device = ("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained('vblagoje/bart_lfqa')
|
| 23 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('vblagoje/bart_lfqa').to(device)
|
| 24 |
+
_ = model.eval()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class JWTBearer(HTTPBearer):
|
| 28 |
+
def __init__(self, auto_error: bool = True):
|
| 29 |
+
super(JWTBearer, self).__init__(auto_error=auto_error)
|
| 30 |
+
|
| 31 |
+
async def __call__(self, request: Request):
|
| 32 |
+
credentials: HTTPAuthorizationCredentials = await super(JWTBearer, self).__call__(request)
|
| 33 |
+
if credentials:
|
| 34 |
+
if not credentials.scheme == "Bearer":
|
| 35 |
+
raise HTTPException(status_code=403, detail="Invalid authentication scheme.")
|
| 36 |
+
if not self.verify_jwt(credentials.credentials):
|
| 37 |
+
raise HTTPException(status_code=403, detail="Invalid token or expired token.")
|
| 38 |
+
return credentials.credentials
|
| 39 |
+
else:
|
| 40 |
+
raise HTTPException(status_code=403, detail="Invalid authorization code.")
|
| 41 |
+
|
| 42 |
+
def verify_jwt(self, jwtoken: str) -> bool:
|
| 43 |
+
isTokenValid: bool = False
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
payload = decodeJWT(jwtoken)
|
| 47 |
+
except:
|
| 48 |
+
payload = None
|
| 49 |
+
if payload:
|
| 50 |
+
isTokenValid = True
|
| 51 |
+
return isTokenValid
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def token_response(token: str):
|
| 55 |
+
return {
|
| 56 |
+
"access_token": token
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def signJWT(user_id: str) -> Dict[str, str]:
|
| 61 |
+
payload = {
|
| 62 |
+
"user_id": user_id,
|
| 63 |
+
"expires": time.time() + 6000
|
| 64 |
+
}
|
| 65 |
+
token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
|
| 66 |
+
|
| 67 |
+
return token_response(token)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def decodeJWT(token: str) -> dict:
|
| 71 |
+
try:
|
| 72 |
+
decoded_token = jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
|
| 73 |
+
return decoded_token if decoded_token["expires"] >= time.time() else None
|
| 74 |
+
except:
|
| 75 |
+
return {}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class LFQAParameters(BaseModel):
|
| 79 |
+
min_length: int = 50
|
| 80 |
+
max_length: int = 250
|
| 81 |
+
do_sample: bool = False
|
| 82 |
+
early_stopping: bool = True
|
| 83 |
+
num_beams: int = 8
|
| 84 |
+
temperature: float = 1.0
|
| 85 |
+
top_k: float = None
|
| 86 |
+
top_p: float = None
|
| 87 |
+
no_repeat_ngram_size: int = 3
|
| 88 |
+
num_return_sequences: int = 1
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class InferencePayload(BaseModel):
|
| 92 |
+
model_input: str
|
| 93 |
+
parameters: Optional[LFQAParameters] = LFQAParameters()
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@app.on_event("startup")
|
| 97 |
+
def startup():
|
| 98 |
+
app.ready = True
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
@app.get("/healthz")
|
| 102 |
+
def healthz():
|
| 103 |
+
if app.ready:
|
| 104 |
+
return PlainTextResponse("ok")
|
| 105 |
+
return PlainTextResponse("service unavailable", status_code=status.HTTP_503_SERVICE_UNAVAILABLE)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@app.post("/generate/", dependencies=[Depends(JWTBearer())])
|
| 109 |
+
def generate(context: InferencePayload):
|
| 110 |
+
|
| 111 |
+
model_input = tokenizer(context.model_input, truncation=True, padding=True, return_tensors="pt")
|
| 112 |
+
param = context.parameters
|
| 113 |
+
generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),
|
| 114 |
+
attention_mask=model_input["attention_mask"].to(device),
|
| 115 |
+
min_length=param.min_length,
|
| 116 |
+
max_length=param.max_length,
|
| 117 |
+
do_sample=param.do_sample,
|
| 118 |
+
early_stopping=param.early_stopping,
|
| 119 |
+
num_beams=param.num_beams,
|
| 120 |
+
temperature=param.temperature,
|
| 121 |
+
top_k=param.top_k,
|
| 122 |
+
top_p=param.top_p,
|
| 123 |
+
no_repeat_ngram_size=param.no_repeat_ngram_size,
|
| 124 |
+
num_return_sequences=param.num_return_sequences)
|
| 125 |
+
answers = tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,
|
| 126 |
+
clean_up_tokenization_spaces=True)
|
| 127 |
+
results = []
|
| 128 |
+
for answer in answers:
|
| 129 |
+
results.append({"generated_text": answer})
|
| 130 |
+
return results
|
lfqa_server/requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets
|
| 2 |
+
transformers
|
| 3 |
+
fastapi
|
| 4 |
+
faiss-gpu
|
| 5 |
+
uvicorn[standard]
|
| 6 |
+
PyJWT==1.7.1
|
| 7 |
+
python-decouple==3.3
|