thinkingnew commited on
Commit
59cdc8b
·
1 Parent(s): 479cd19
Files changed (1) hide show
  1. app.py +18 -10
app.py CHANGED
@@ -1,4 +1,5 @@
1
- from fastapi import FastAPI
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
  from peft import PeftModel
4
  import torch
@@ -12,23 +13,30 @@ adapter_path = "thinkingnew/llama_invs_adapter"
12
  # Check if GPU is available
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
 
15
- # Load base model with device_map="auto" to handle GPUs automatically
16
  base_model = AutoModelForCausalLM.from_pretrained(
17
  base_model_path, torch_dtype=torch.float16, device_map="auto"
18
  )
19
 
20
- # Load adapter
21
- model = PeftModel.from_pretrained(base_model, adapter_path).to(device) # Ensure model is on correct device
22
 
23
  # Load tokenizer
24
  tokenizer = AutoTokenizer.from_pretrained(base_model_path)
25
 
 
 
 
 
26
  # **Use `model.generate()` instead of `pipeline()`**
27
  def generate_text_from_model(prompt: str):
28
- input_ids = tokenizer(f"<s>[INST] {prompt} [/INST]", return_tensors="pt").input_ids.to(device)
29
- output_ids = model.generate(input_ids, max_length=512)
30
- generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
31
- return generated_text
 
 
 
32
 
33
  # Root endpoint for testing
34
  @app.get("/")
@@ -37,6 +45,6 @@ async def root():
37
 
38
  # Text generation endpoint
39
  @app.post("/generate/")
40
- async def generate_text(prompt: str):
41
- response = generate_text_from_model(prompt)
42
  return {"response": response}
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
  from transformers import AutoModelForCausalLM, AutoTokenizer
4
  from peft import PeftModel
5
  import torch
 
13
  # Check if GPU is available
14
  device = "cuda" if torch.cuda.is_available() else "cpu"
15
 
16
+ # Load base model with `device_map="auto"` to handle GPUs automatically
17
  base_model = AutoModelForCausalLM.from_pretrained(
18
  base_model_path, torch_dtype=torch.float16, device_map="auto"
19
  )
20
 
21
+ # Load adapter and ensure it is on the correct device
22
+ model = PeftModel.from_pretrained(base_model, adapter_path).to(device)
23
 
24
  # Load tokenizer
25
  tokenizer = AutoTokenizer.from_pretrained(base_model_path)
26
 
27
+ # Define request model for validation
28
+ class GenerateRequest(BaseModel):
29
+ prompt: str
30
+
31
  # **Use `model.generate()` instead of `pipeline()`**
32
  def generate_text_from_model(prompt: str):
33
+ try:
34
+ input_ids = tokenizer(f"<s>[INST] {prompt} [/INST]", return_tensors="pt").input_ids.to(device)
35
+ output_ids = model.generate(input_ids, max_length=512)
36
+ generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
37
+ return generated_text
38
+ except Exception as e:
39
+ raise HTTPException(status_code=500, detail=str(e))
40
 
41
  # Root endpoint for testing
42
  @app.get("/")
 
45
 
46
  # Text generation endpoint
47
  @app.post("/generate/")
48
+ async def generate_text(request: GenerateRequest):
49
+ response = generate_text_from_model(request.prompt)
50
  return {"response": response}