Spaces:
Runtime error
Runtime error
Commit
·
59cdc8b
1
Parent(s):
479cd19
updated
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
|
|
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
|
@@ -12,23 +13,30 @@ adapter_path = "thinkingnew/llama_invs_adapter"
|
|
| 12 |
# Check if GPU is available
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
|
| 15 |
-
# Load base model with device_map="auto" to handle GPUs automatically
|
| 16 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
base_model_path, torch_dtype=torch.float16, device_map="auto"
|
| 18 |
)
|
| 19 |
|
| 20 |
-
# Load adapter
|
| 21 |
-
model = PeftModel.from_pretrained(base_model, adapter_path).to(device)
|
| 22 |
|
| 23 |
# Load tokenizer
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# **Use `model.generate()` instead of `pipeline()`**
|
| 27 |
def generate_text_from_model(prompt: str):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Root endpoint for testing
|
| 34 |
@app.get("/")
|
|
@@ -37,6 +45,6 @@ async def root():
|
|
| 37 |
|
| 38 |
# Text generation endpoint
|
| 39 |
@app.post("/generate/")
|
| 40 |
-
async def generate_text(
|
| 41 |
-
response = generate_text_from_model(prompt)
|
| 42 |
return {"response": response}
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from peft import PeftModel
|
| 5 |
import torch
|
|
|
|
| 13 |
# Check if GPU is available
|
| 14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
|
| 16 |
+
# Load base model with `device_map="auto"` to handle GPUs automatically
|
| 17 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
base_model_path, torch_dtype=torch.float16, device_map="auto"
|
| 19 |
)
|
| 20 |
|
| 21 |
+
# Load adapter and ensure it is on the correct device
|
| 22 |
+
model = PeftModel.from_pretrained(base_model, adapter_path).to(device)
|
| 23 |
|
| 24 |
# Load tokenizer
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
| 26 |
|
| 27 |
+
# Define request model for validation
|
| 28 |
+
class GenerateRequest(BaseModel):
|
| 29 |
+
prompt: str
|
| 30 |
+
|
| 31 |
# **Use `model.generate()` instead of `pipeline()`**
|
| 32 |
def generate_text_from_model(prompt: str):
|
| 33 |
+
try:
|
| 34 |
+
input_ids = tokenizer(f"<s>[INST] {prompt} [/INST]", return_tensors="pt").input_ids.to(device)
|
| 35 |
+
output_ids = model.generate(input_ids, max_length=512)
|
| 36 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 37 |
+
return generated_text
|
| 38 |
+
except Exception as e:
|
| 39 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 40 |
|
| 41 |
# Root endpoint for testing
|
| 42 |
@app.get("/")
|
|
|
|
| 45 |
|
| 46 |
# Text generation endpoint
|
| 47 |
@app.post("/generate/")
|
| 48 |
+
async def generate_text(request: GenerateRequest):
|
| 49 |
+
response = generate_text_from_model(request.prompt)
|
| 50 |
return {"response": response}
|