Spaces:
Running
Running
Init commit
Browse files- README.md +18 -12
- app.py +138 -0
- data.jsonl +0 -0
- preload-data +0 -0
- requirements.txt +22 -0
- unchunked_data.json +0 -0
README.md
CHANGED
|
@@ -1,12 +1,18 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SFU IT Chatbot w/ Ollama
|
| 2 |
+
This chatbot runs locally on your computer! Yay! This RAG Chatbot uses Gemma3-4b LLM and all-MiniLM-L6-v2 for vector embedding.
|
| 3 |
+
|
| 4 |
+
To run the app, you need Ollama installed which can be found here: <br>
|
| 5 |
+
https://ollama.com/download
|
| 6 |
+
|
| 7 |
+
Then, you need to download Gemma3-4b from your terminal:<br>
|
| 8 |
+
`ollama pull gemma3:4b`
|
| 9 |
+
|
| 10 |
+
Now, first set up virtual environment:<br>
|
| 11 |
+
`python3 -m venv venv`<br>
|
| 12 |
+
`source venv/bin/activate`
|
| 13 |
+
|
| 14 |
+
Then install requirements:<br>
|
| 15 |
+
`pip install -r requirements.txt`
|
| 16 |
+
|
| 17 |
+
Now run the app (Note: This uses about 3-4 GB of RAM):<br>
|
| 18 |
+
`python app.py`
|
app.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
from huggingface_hub import login
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Sanity Check
|
| 13 |
+
hf_token = os.getenv("V2_TOKEN")
|
| 14 |
+
if hf_token is None:
|
| 15 |
+
raise RuntimeError("V2_TOKEN environment variable is not set in this Space.")
|
| 16 |
+
|
| 17 |
+
# Explicit login
|
| 18 |
+
login(token=hf_token)
|
| 19 |
+
|
| 20 |
+
# --- Configuration ---
|
| 21 |
+
print("Loading RAG system on your device...")
|
| 22 |
+
|
| 23 |
+
# Load Knowledge base
|
| 24 |
+
FILE_PATH = "data.jsonl"
|
| 25 |
+
PRELOAD_FILE_PATH = "preload-data"
|
| 26 |
+
|
| 27 |
+
# File path readings
|
| 28 |
+
if not os.path.exists(FILE_PATH):
|
| 29 |
+
# Dummy data for testing if you don't have the file yet
|
| 30 |
+
print(f"Warning: {FILE_PATH} not found. Creating dummy data.")
|
| 31 |
+
data = [{"text": "To reset your password, visit password.sfu.ca and click 'Forgot Password'."}]
|
| 32 |
+
elif os.path.exists(PRELOAD_FILE_PATH):
|
| 33 |
+
print(f"Found Preloaded Data! Using {PRELOAD_FILE_PATH}...")
|
| 34 |
+
with open(PRELOAD_FILE_PATH, "r", encoding="utf-8") as f:
|
| 35 |
+
data = json.load(f)
|
| 36 |
+
else:
|
| 37 |
+
with open(FILE_PATH, "r", encoding="utf-8") as f:
|
| 38 |
+
print(f"No Preloaded Data Found. Using {FILE_PATH}...")
|
| 39 |
+
data = pd.read_json(path_or_buf=f, lines=True)
|
| 40 |
+
|
| 41 |
+
# Writes in data embedding
|
| 42 |
+
if not os.path.exists(PRELOAD_FILE_PATH):
|
| 43 |
+
documents = list(data["text"])
|
| 44 |
+
print(f"Creating {PRELOAD_FILE_PATH}...")
|
| 45 |
+
with open("preload-data", "w") as fp:
|
| 46 |
+
json.dump(documents, fp)
|
| 47 |
+
else:
|
| 48 |
+
documents = data
|
| 49 |
+
|
| 50 |
+
# Embeddings
|
| 51 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 52 |
+
embeddings = embedding_model.encode(documents, convert_to_numpy=True)
|
| 53 |
+
|
| 54 |
+
# Use pandas dataframe
|
| 55 |
+
df = pd.DataFrame(
|
| 56 |
+
{
|
| 57 |
+
"Document": documents,
|
| 58 |
+
"Embedding": list(embeddings), # store as list
|
| 59 |
+
}
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Load LLM Pipeline
|
| 63 |
+
llm = pipeline(
|
| 64 |
+
"text-generation",
|
| 65 |
+
model="google/flan-t5-xl", # Might not have enough storage ngl
|
| 66 |
+
token=hf_token
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Retrieve w Pandas
|
| 70 |
+
def retrieve_with_pandas(query: str, top_k: int = 10):
|
| 71 |
+
"""
|
| 72 |
+
Embed the query, compute cosine similarity to each document,
|
| 73 |
+
and return the top_k most similar documents (as a DataFrame).
|
| 74 |
+
"""
|
| 75 |
+
query_embedding = embedding_model.encode([query])[0]
|
| 76 |
+
|
| 77 |
+
def cosine_sim(x):
|
| 78 |
+
x = np.array(x)
|
| 79 |
+
return float(
|
| 80 |
+
np.dot(query_embedding, x)
|
| 81 |
+
/ (np.linalg.norm(query_embedding) * np.linalg.norm(x))
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
df["Similarity"] = df["Embedding"].apply(cosine_sim)
|
| 85 |
+
results = df.sort_values(by="Similarity", ascending=False).head(top_k)
|
| 86 |
+
return results[["Document", "Similarity"]]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def generate_with_rag(query, top_k=5):
|
| 90 |
+
# Retrieve context as a pandas Series of document texts
|
| 91 |
+
docs = retrieve_with_pandas(query) # whatever you currently return
|
| 92 |
+
context_series = docs["Document"] if "Document" in docs else docs
|
| 93 |
+
|
| 94 |
+
# Turn the Series into a single string of text
|
| 95 |
+
# (each doc separated by a divider)
|
| 96 |
+
context_str = "\n\n---\n\n".join(context_series.tolist())
|
| 97 |
+
|
| 98 |
+
# Build a clean prompt
|
| 99 |
+
input_text = f"""You are an IT helpdesk assistant.
|
| 100 |
+
If the user asked a question, answer the user's question with detailed step by step instructions: consider all the articles below.
|
| 101 |
+
If the user asked a question and the answer is not in the contexts, say you don't know and suggest contacting SFU IT.
|
| 102 |
+
If the user DID NOT ask a question, be friendly and ask how you can help them.
|
| 103 |
+
|
| 104 |
+
Question:
|
| 105 |
+
{query}
|
| 106 |
+
|
| 107 |
+
-- Start of Articles --
|
| 108 |
+
{context_str}
|
| 109 |
+
-- End of Articles --
|
| 110 |
+
|
| 111 |
+
Answer:"""
|
| 112 |
+
|
| 113 |
+
# Call the LLM
|
| 114 |
+
response = llm(
|
| 115 |
+
input_text,
|
| 116 |
+
max_new_tokens=1024,
|
| 117 |
+
do_sample=False,
|
| 118 |
+
return_full_text=False
|
| 119 |
+
)
|
| 120 |
+
return response[0]["generated_text"].strip()
|
| 121 |
+
|
| 122 |
+
def chat_fn(message, history):
|
| 123 |
+
"""
|
| 124 |
+
Chat Interface callback
|
| 125 |
+
"""
|
| 126 |
+
answer = generate_with_rag(message, top_k=2)
|
| 127 |
+
return answer
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
demo = gr.ChatInterface(
|
| 131 |
+
fn=chat_fn,
|
| 132 |
+
title="SFU IT Chatbot",
|
| 133 |
+
description="Enter your question and the SFU IT Chatbot will try to answer using retrieved SFU IT knowledge.",
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# share=True
|
| 137 |
+
if __name__ == "__main__":
|
| 138 |
+
demo.launch()
|
data.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preload-data
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
gradio==5.6.0
|
| 3 |
+
gradio_client==1.4.3
|
| 4 |
+
huggingface-hub
|
| 5 |
+
keras
|
| 6 |
+
libclang
|
| 7 |
+
numpy
|
| 8 |
+
pandas
|
| 9 |
+
pydantic
|
| 10 |
+
pydantic_core
|
| 11 |
+
|
| 12 |
+
safetensors
|
| 13 |
+
scikit-learn
|
| 14 |
+
scipy
|
| 15 |
+
sentence-transformers
|
| 16 |
+
tensorboard
|
| 17 |
+
tensorflow
|
| 18 |
+
tf_keras
|
| 19 |
+
tokenizers
|
| 20 |
+
torch
|
| 21 |
+
transformers
|
| 22 |
+
wheel
|
unchunked_data.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|