Spaces:
No application file
No application file
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
print('torch version:', torch.__version__)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from unsloth import FastLanguageModel
|
| 11 |
+
|
| 12 |
+
max_seq_length = 2048
|
| 13 |
+
dtype = None
|
| 14 |
+
load_in_4bit = True
|
| 15 |
+
|
| 16 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 17 |
+
model_name = "ua-l/gemma-2-9b-legal-steps200-uk", # YOUR MODEL YOU USED FOR TRAINING
|
| 18 |
+
max_seq_length = max_seq_length,
|
| 19 |
+
dtype = dtype,
|
| 20 |
+
load_in_4bit = load_in_4bit,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
FastLanguageModel.for_inference(model)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def predict(question):
|
| 27 |
+
inputs = tokenizer(
|
| 28 |
+
[f'''### Question:
|
| 29 |
+
{question}
|
| 30 |
+
|
| 31 |
+
### Answer:
|
| 32 |
+
'''], return_tensors = "pt").to("cuda")
|
| 33 |
+
|
| 34 |
+
outputs = model.generate(**inputs, max_new_tokens = 128)
|
| 35 |
+
|
| 36 |
+
results = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 37 |
+
|
| 38 |
+
return results[0]
|
| 39 |
+
|
| 40 |
+
inputs = gr.Textbox(lines=2, label="Enter a question", value="Як отримати виплати ВПО?")
|
| 41 |
+
|
| 42 |
+
outputs = gr.Textbox(label="Answer")
|
| 43 |
+
|
| 44 |
+
demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs)
|
| 45 |
+
demo.launch()
|
| 46 |
+
|