Thatguy099's picture
Update app.py
956b300 verified
"""
Script ini dibuat oleh __drat dan BF667 di GitHub.
Petunjuk:
1. Mengkonversi teks menjadi suara menggunakan Edge TTS dan Retrieval-based Voice Conversion (RVC).
2. Mendukung model text-to-speech (TTS) untuk bahasa Indonesia, Jawa, dan Sunda.
3. Antarmuka menggunakan Gradio dengan tema kustom IndonesiaTheme.
Cara Menggunakan:
1. Pilih model suara dari dropdown.
2. Atur parameter (kecepatan bicara, pitch, dll.).
3. Masukkan teks untuk dikonversi.
4. Klik "Convert" untuk menghasilkan suara.
5. Dengarkan hasil melalui komponen audio.
"""
import asyncio
import datetime
import logging
import os
import time
import traceback
import warnings
from pathlib import Path
import edge_tts
import gradio as gr
import librosa
import torch
import tqdm
import requests
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
# Konfigurasi awal
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
for logger_name in ["fairseq", "numba", "markdown_it", "urllib3", "matplotlib"]:
logging.getLogger(logger_name).setLevel(logging.ERROR)
config = Config()
BASE_DIR = Path.cwd()
MODEL_ROOT = BASE_DIR / "weights"
EDGE_OUTPUT_FILENAME = "edge_output.mp3"
LIMITATION = os.getenv("SYSTEM") == "spaces"
# Memuat daftar suara Edge TTS
tts_voice_list = asyncio.run(edge_tts.list_voices())
tts_voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
# Memuat model RVC dari direktori weights
models = sorted([d for d in MODEL_ROOT.iterdir() if d.is_dir()])
def model_data(model_name: str):
"""Memuat data model berdasarkan nama model."""
try:
pth_path = next(MODEL_ROOT / model_name).glob("*.pth")
logging.info(f"Memuat model: {pth_path}")
cpt = torch.load(pth_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
# Pilih model berdasarkan versi dan f0
model_classes = {
("v1", 1): SynthesizerTrnMs256NSFsid,
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
("v2", 1): SynthesizerTrnMs768NSFsid,
("v2", 0): SynthesizerTrnMs768NSFsid_nono,
}
model_class = model_classes.get((version, if_f0))
if not model_class:
raise ValueError(f"Versi model tidak valid: {version}, f0: {if_f0}")
net_g = model_class(*cpt["config"], is_half=config.is_half)
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
net_g.eval().to(config.device)
net_g = net_g.half() if config.is_half else net_g.float()
vc = VC(tgt_sr, config)
index_file = next((MODEL_ROOT / model_name).glob("*.index"), "")
logging.info(f"File indeks: {index_file or 'Tidak ditemukan'}")
return tgt_sr, net_g, vc, version, str(index_file), if_f0
except Exception as e:
logging.error(f"Error memuat model: {e}")
raise
def load_hubert():
from fairseq import fairseq
forward_dml = fairseq.GradMultiply.forward
models, _, _ = fairseq.load_model(
f"{BASE_DIR}/hubert_base.pt",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
def download_file(url: str, output_path: str = None):
"""Mengunduh file dari URL dengan progress bar."""
try:
url = url.replace("/blob/", "/resolve/").replace("?download=true", "").strip()
output_path = Path(output_path or os.path.basename(url))
response = requests.get(url, stream=True, timeout=300)
response.raise_for_status()
total_size = int(response.headers.get("content-length", 0))
with open(output_path, "wb") as f, tqdm.tqdm(
desc=output_path.name, total=total_size, unit="B", unit_scale=True
) as pbar:
for chunk in response.iter_content(chunk_size=10 * 1024 * 1024):
f.write(chunk)
pbar.update(len(chunk))
return str(output_path)
except Exception as e:
logging.error(f"Error mengunduh file: {e}")
raise
def tts(
model_name: str,
speed: int,
tts_text: str,
tts_voice: str,
f0_up_key: int,
index_rate: float,
protect: float,
filter_radius: int = 3,
resample_sr: int = 0,
rms_mix_rate: float = 0.25,
):
"""Fungsi utama untuk konversi teks ke suara."""
logging.info(f"Memulai TTS: {model_name}, teks: {tts_text[:50]}...")
try:
if LIMITATION and len(tts_text) > 500:
return f"Teks terlalu panjang: {len(tts_text)} karakter (>500).", None, None
t0 = time.time()
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
asyncio.run(
edge_tts.Communicate(
tts_text, "-".join(tts_voice.split("-")[:-1]), rate=speed_str
).save(EDGE_OUTPUT_FILENAME)
)
edge_time = time.time() - t0
audio, sr = librosa.load(EDGE_OUTPUT_FILENAME, sr=16000, mono=True)
duration = len(audio) / sr
if LIMITATION and duration >= 50:
return f"Audio terlalu panjang: {duration}s (>50s).", EDGE_OUTPUT_FILENAME, None
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
vc.model_rmvpe = rmvpe_model
times = [0, 0, 0]
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
EDGE_OUTPUT_FILENAME,
times,
f0_up_key,
"rmvpe",
index_file,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
None,
)
tgt_sr = resample_sr if resample_sr >= 16000 else tgt_sr
info = f"Berhasil. Waktu: edge-tts: {edge_time:.2f}s, npy: {times[0]:.2f}s, f0: {times[1]:.2f}s, infer: {times[2]:.2f}s"
return info, EDGE_OUTPUT_FILENAME, (tgt_sr, audio_opt)
except Exception as e:
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
logging.error(error_msg)
return error_msg, None, None
# Memuat model
logging.info("Memuat model Hubert...")
hubert_model = load_hubert()
logging.info("Memuat model RMVPE...")
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
import zipfile # Tambahkan impor ini di bagian atas file
def download_model(url: str, model_name: str):
"""Mengunduh, menyimpan, dan mengekstrak model ke direktori weights."""
try:
output_path = MODEL_ROOT / model_name
output_path.mkdir(exist_ok=True)
downloaded_file = download_file(url, output_path / "ekstrak.zip")
# Ekstrak file ZIP ke direktori weights/{nama_model}
with zipfile.ZipFile(downloaded_file, 'r') as zip_ref:
zip_ref.extractall(output_path)
logging.info(f"File ZIP diekstrak ke: {output_path}")
# Hapus file ZIP setelah ekstraksi (opsional)
os.remove(downloaded_file)
logging.info(f"File ZIP {downloaded_file} dihapus setelah ekstraksi")
return f"Model {model_name} berhasil diunduh dan diekstrak ke {output_path}"
except Exception as e:
logging.error(f"Error saat mengunduh atau mengekstrak model: {e}")
raise
# Antarmuka Gradio
initial_md = """
<h1 align="center"><b>TTS RVC Indonesia ๐ŸŽต</b></h1>
<p align="center">Konversi teks ke suara menggunakan Edge TTS dan RVC untuk suara artis Indonesia.</p>
<p><b>Perhatian:</b> Jangan menyalahgunakan teknologi ini. <b>Limitasi:</b> Teks maks. 500 karakter, audio maks. 50 detik.</p>
"""
with gr.Blocks(theme="Thatguy099/Sonix", title="TTS-RVC Indonesia") as app:
gr.Markdown(initial_md)
with gr.Row():
model_name = gr.Dropdown(label="Model", choices=models, value=models[0])
f0_key_up = gr.Number(label="Tune (oktaf dari edge-tts)", value=2)
with gr.Column():
with gr.Row():
with gr.Tab("Unduh Model"):
url = gr.Textbox(label="URL Model")
model_nae = gr.Textbox(label="Nama Model")
dlm = gr.Button("Unduh Model")
dlm.click(fn=download_model, inputs=[url, model_nae], outputs=None)
index_rate = gr.Slider(minimum=0, maximum=1, label="Tingkat Indeks", value=0.5)
protect0 = gr.Slider(minimum=0, maximum=0.5, label="Perlindungan", value=0.33, step=0.01)
tts_voice = gr.Dropdown(
label="Pembicara Edge-TTS (bahasa-Negara-Nama-Jenis Kelamin)",
choices=tts_voices,
value="id-ID-ArdiNeural-Male",
)
speed = gr.Slider(minimum=-100, maximum=100, label="Kecepatan Bicara (%)", value=0, step=10)
tts_text = gr.Textbox(label="Teks Input", value="Konversi teks ke suara dalam bahasa Indonesia.")
but0 = gr.Button("Konversi", variant="primary")
info_text = gr.Textbox(label="Informasi Output")
with gr.Row():
edge_tts_output = gr.Audio(label="Suara Edge", type="filepath")
tts_output = gr.Audio(label="Hasil")
but0.click(
tts,
[model_name, speed, tts_text, tts_voice, f0_key_up, index_rate, protect0],
[info_text, edge_tts_output, tts_output],
)
gr.Examples(
examples=[
["Ini adalah demo percobaan menggunakan Bahasa Indonesia untuk pria.", "id-ID-ArdiNeural-Male"],
["Ini adalah teks percobaan menggunakan Bahasa Indonesia pada wanita.", "id-ID-GadisNeural-Female"],
],
inputs=[tts_text, tts_voice],
)
gr.HTML("""
<footer style="text-align: center; margin-top: 20px; color:silver;">
Energi Semesta Digital ยฉ 2024 __drat. | ๐Ÿ‡ฎ๐Ÿ‡ฉ Untuk Indonesia Jaya!
</footer>
""")
app.launch()