""" Script ini dibuat oleh __drat dan BF667 di GitHub. Petunjuk: 1. Mengkonversi teks menjadi suara menggunakan Edge TTS dan Retrieval-based Voice Conversion (RVC). 2. Mendukung model text-to-speech (TTS) untuk bahasa Indonesia, Jawa, dan Sunda. 3. Antarmuka menggunakan Gradio dengan tema kustom IndonesiaTheme. Cara Menggunakan: 1. Pilih model suara dari dropdown. 2. Atur parameter (kecepatan bicara, pitch, dll.). 3. Masukkan teks untuk dikonversi. 4. Klik "Convert" untuk menghasilkan suara. 5. Dengarkan hasil melalui komponen audio. """ import asyncio import datetime import logging import os import time import traceback import warnings from pathlib import Path import edge_tts import gradio as gr import librosa import torch import tqdm import requests from config import Config from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from rmvpe import RMVPE from vc_infer_pipeline import VC # Konfigurasi awal warnings.filterwarnings("ignore") logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") for logger_name in ["fairseq", "numba", "markdown_it", "urllib3", "matplotlib"]: logging.getLogger(logger_name).setLevel(logging.ERROR) config = Config() BASE_DIR = Path.cwd() MODEL_ROOT = BASE_DIR / "weights" EDGE_OUTPUT_FILENAME = "edge_output.mp3" LIMITATION = os.getenv("SYSTEM") == "spaces" # Memuat daftar suara Edge TTS tts_voice_list = asyncio.run(edge_tts.list_voices()) tts_voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] # Memuat model RVC dari direktori weights models = sorted([d for d in MODEL_ROOT.iterdir() if d.is_dir()]) def model_data(model_name: str): """Memuat data model berdasarkan nama model.""" try: pth_path = next(MODEL_ROOT / model_name).glob("*.pth") logging.info(f"Memuat model: {pth_path}") cpt = torch.load(pth_path, map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") # Pilih model berdasarkan versi dan f0 model_classes = { ("v1", 1): SynthesizerTrnMs256NSFsid, ("v1", 0): SynthesizerTrnMs256NSFsid_nono, ("v2", 1): SynthesizerTrnMs768NSFsid, ("v2", 0): SynthesizerTrnMs768NSFsid_nono, } model_class = model_classes.get((version, if_f0)) if not model_class: raise ValueError(f"Versi model tidak valid: {version}, f0: {if_f0}") net_g = model_class(*cpt["config"], is_half=config.is_half) del net_g.enc_q net_g.load_state_dict(cpt["weight"], strict=False) net_g.eval().to(config.device) net_g = net_g.half() if config.is_half else net_g.float() vc = VC(tgt_sr, config) index_file = next((MODEL_ROOT / model_name).glob("*.index"), "") logging.info(f"File indeks: {index_file or 'Tidak ditemukan'}") return tgt_sr, net_g, vc, version, str(index_file), if_f0 except Exception as e: logging.error(f"Error memuat model: {e}") raise def load_hubert(): from fairseq import fairseq forward_dml = fairseq.GradMultiply.forward models, _, _ = fairseq.load_model( f"{BASE_DIR}/hubert_base.pt", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() return hubert_model.eval() def download_file(url: str, output_path: str = None): """Mengunduh file dari URL dengan progress bar.""" try: url = url.replace("/blob/", "/resolve/").replace("?download=true", "").strip() output_path = Path(output_path or os.path.basename(url)) response = requests.get(url, stream=True, timeout=300) response.raise_for_status() total_size = int(response.headers.get("content-length", 0)) with open(output_path, "wb") as f, tqdm.tqdm( desc=output_path.name, total=total_size, unit="B", unit_scale=True ) as pbar: for chunk in response.iter_content(chunk_size=10 * 1024 * 1024): f.write(chunk) pbar.update(len(chunk)) return str(output_path) except Exception as e: logging.error(f"Error mengunduh file: {e}") raise def tts( model_name: str, speed: int, tts_text: str, tts_voice: str, f0_up_key: int, index_rate: float, protect: float, filter_radius: int = 3, resample_sr: int = 0, rms_mix_rate: float = 0.25, ): """Fungsi utama untuk konversi teks ke suara.""" logging.info(f"Memulai TTS: {model_name}, teks: {tts_text[:50]}...") try: if LIMITATION and len(tts_text) > 500: return f"Teks terlalu panjang: {len(tts_text)} karakter (>500).", None, None t0 = time.time() speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%" asyncio.run( edge_tts.Communicate( tts_text, "-".join(tts_voice.split("-")[:-1]), rate=speed_str ).save(EDGE_OUTPUT_FILENAME) ) edge_time = time.time() - t0 audio, sr = librosa.load(EDGE_OUTPUT_FILENAME, sr=16000, mono=True) duration = len(audio) / sr if LIMITATION and duration >= 50: return f"Audio terlalu panjang: {duration}s (>50s).", EDGE_OUTPUT_FILENAME, None tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name) vc.model_rmvpe = rmvpe_model times = [0, 0, 0] audio_opt = vc.pipeline( hubert_model, net_g, 0, audio, EDGE_OUTPUT_FILENAME, times, f0_up_key, "rmvpe", index_file, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, None, ) tgt_sr = resample_sr if resample_sr >= 16000 else tgt_sr info = f"Berhasil. Waktu: edge-tts: {edge_time:.2f}s, npy: {times[0]:.2f}s, f0: {times[1]:.2f}s, infer: {times[2]:.2f}s" return info, EDGE_OUTPUT_FILENAME, (tgt_sr, audio_opt) except Exception as e: error_msg = f"Error: {str(e)}\n{traceback.format_exc()}" logging.error(error_msg) return error_msg, None, None # Memuat model logging.info("Memuat model Hubert...") hubert_model = load_hubert() logging.info("Memuat model RMVPE...") rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) import zipfile # Tambahkan impor ini di bagian atas file def download_model(url: str, model_name: str): """Mengunduh, menyimpan, dan mengekstrak model ke direktori weights.""" try: output_path = MODEL_ROOT / model_name output_path.mkdir(exist_ok=True) downloaded_file = download_file(url, output_path / "ekstrak.zip") # Ekstrak file ZIP ke direktori weights/{nama_model} with zipfile.ZipFile(downloaded_file, 'r') as zip_ref: zip_ref.extractall(output_path) logging.info(f"File ZIP diekstrak ke: {output_path}") # Hapus file ZIP setelah ekstraksi (opsional) os.remove(downloaded_file) logging.info(f"File ZIP {downloaded_file} dihapus setelah ekstraksi") return f"Model {model_name} berhasil diunduh dan diekstrak ke {output_path}" except Exception as e: logging.error(f"Error saat mengunduh atau mengekstrak model: {e}") raise # Antarmuka Gradio initial_md = """
Konversi teks ke suara menggunakan Edge TTS dan RVC untuk suara artis Indonesia.
Perhatian: Jangan menyalahgunakan teknologi ini. Limitasi: Teks maks. 500 karakter, audio maks. 50 detik.
""" with gr.Blocks(theme="Thatguy099/Sonix", title="TTS-RVC Indonesia") as app: gr.Markdown(initial_md) with gr.Row(): model_name = gr.Dropdown(label="Model", choices=models, value=models[0]) f0_key_up = gr.Number(label="Tune (oktaf dari edge-tts)", value=2) with gr.Column(): with gr.Row(): with gr.Tab("Unduh Model"): url = gr.Textbox(label="URL Model") model_nae = gr.Textbox(label="Nama Model") dlm = gr.Button("Unduh Model") dlm.click(fn=download_model, inputs=[url, model_nae], outputs=None) index_rate = gr.Slider(minimum=0, maximum=1, label="Tingkat Indeks", value=0.5) protect0 = gr.Slider(minimum=0, maximum=0.5, label="Perlindungan", value=0.33, step=0.01) tts_voice = gr.Dropdown( label="Pembicara Edge-TTS (bahasa-Negara-Nama-Jenis Kelamin)", choices=tts_voices, value="id-ID-ArdiNeural-Male", ) speed = gr.Slider(minimum=-100, maximum=100, label="Kecepatan Bicara (%)", value=0, step=10) tts_text = gr.Textbox(label="Teks Input", value="Konversi teks ke suara dalam bahasa Indonesia.") but0 = gr.Button("Konversi", variant="primary") info_text = gr.Textbox(label="Informasi Output") with gr.Row(): edge_tts_output = gr.Audio(label="Suara Edge", type="filepath") tts_output = gr.Audio(label="Hasil") but0.click( tts, [model_name, speed, tts_text, tts_voice, f0_key_up, index_rate, protect0], [info_text, edge_tts_output, tts_output], ) gr.Examples( examples=[ ["Ini adalah demo percobaan menggunakan Bahasa Indonesia untuk pria.", "id-ID-ArdiNeural-Male"], ["Ini adalah teks percobaan menggunakan Bahasa Indonesia pada wanita.", "id-ID-GadisNeural-Female"], ], inputs=[tts_text, tts_voice], ) gr.HTML(""" """) app.launch()