Spaces:
Running
Running
File size: 13,850 Bytes
8f61322 1edb31f 8f61322 1edb31f 8f61322 1edb31f 8f61322 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 1edb31f 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 1edb31f 8f61322 1edb31f 9ceaca4 1edb31f 9ceaca4 1edb31f 8f61322 9ceaca4 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 1edb31f a30e4fc 1edb31f 9ceaca4 8f61322 9ceaca4 1edb31f 8f61322 1edb31f 8f61322 1edb31f 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 1edb31f 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 8f61322 9ceaca4 a30e4fc 9ceaca4 8f61322 9ceaca4 8f61322 9ceaca4 8f61322 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 8f61322 a30e4fc 1edb31f 8f61322 1edb31f 9ceaca4 8f61322 9ceaca4 1edb31f 9ceaca4 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 8f61322 1edb31f 8f61322 9ceaca4 1edb31f 9ceaca4 1edb31f 9ceaca4 1edb31f 8f61322 1edb31f 9ceaca4 1edb31f 8f61322 1edb31f 8f61322 1edb31f 8f61322 1edb31f 8f61322 1edb31f 8f61322 9ceaca4 1edb31f 9ceaca4 8f61322 9ceaca4 8f61322 1edb31f 9ceaca4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# app.py — MCP server (refined)
# Key improvements:
# - Robust JSON extraction & repair
# - Detailed debug logging, write raw LLM output to /tmp when parse fails
# - Defensive LLM handling
# - Uses your ocr_engine.extract_text_and_conf
from mcp.server.fastmcp import FastMCP
from typing import Optional, Any, Dict
import requests
import os
import gradio as gr
import json
import re
import logging
import gc
import time
import traceback
# imports from local modules (these must exist)
from ocr_engine import extract_text_and_conf
from prompts import get_ocr_extraction_prompt, get_agent_prompt
# config (must exist)
try:
from config import CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, INVOICE_API_BASE, ORGANIZATION_ID, LOCAL_MODEL
except Exception as e:
raise SystemExit("Missing config.py or required keys. Error: " + str(e))
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mcp_server")
mcp = FastMCP("ZohoCRMAgent")
LLM_PIPELINE = None
TOKENIZER = None
# ---------------- JSON extraction helpers ----------------
def _try_json_loads(text: str) -> Optional[Any]:
try:
return json.loads(text)
except Exception:
return None
def _remove_code_fences(s: str) -> str:
s = re.sub(r"```(?:json)?\s*", "", s, flags=re.IGNORECASE)
s = re.sub(r"\s*```$", "", s, flags=re.IGNORECASE)
return s.strip()
def _attempt_simple_repairs(s: str) -> str:
# keep printable chars
s = "".join(ch for ch in s if (ch == "\n" or ch == "\t" or (32 <= ord(ch) <= 0x10FFFF)))
# remove trailing commas
s = re.sub(r",\s*(\}|])", r"\1", s)
# convert single quotes if double quotes not present
if '"' not in s and "'" in s:
s = s.replace("'", '"')
return s
def _dump_raw_llm_output(text: str) -> str:
"""Dump raw LLM output to a timestamped file for debugging and return path."""
try:
ts = int(time.time())
path = f"/tmp/llm_output_{ts}.txt"
with open(path, "w", encoding="utf-8") as f:
f.write(text)
logger.info("Wrote raw LLM output to %s for debugging", path)
return path
except Exception as e:
logger.exception("Failed to write raw llm output: %s", e)
return ""
def extract_json_safely(text: str) -> Optional[Any]:
"""
Robustly extract JSON from LLM output.
1) Try direct loads
2) Try marker extraction <<<JSON>>> ... <<<END_JSON>>>
3) Try largest balanced { ... } block
4) Try array [...]
On failure, write raw text to /tmp and return None.
"""
if not text:
return None
# direct
parsed = _try_json_loads(text)
if parsed is not None:
return parsed
# marker-based extraction
marker_re = re.compile(r"<<<JSON>>>\s*([\s\S]*?)\s*<<<END_JSON>>>", re.IGNORECASE)
m = marker_re.search(text)
if m:
cand = _remove_code_fences(m.group(1))
p = _try_json_loads(cand)
if p is not None:
return p
cand2 = _attempt_simple_repairs(cand)
try:
return json.loads(cand2)
except Exception as e:
logger.warning("Marker JSON repair failed: %s", e)
# fallback: largest balanced {...}
stack = []
spans = []
for i, ch in enumerate(text):
if ch == "{":
stack.append(i)
elif ch == "}" and stack:
start = stack.pop()
spans.append((start, i))
spans = sorted(spans, key=lambda t: t[1]-t[0], reverse=True)
for start, end in spans:
cand = text[start:end+1].strip()
if len(cand) < 20:
continue
cand = _remove_code_fences(cand)
p = _try_json_loads(cand)
if p is not None:
return p
cand2 = _attempt_simple_repairs(cand)
try:
return json.loads(cand2)
except Exception:
continue
# try array
arr = re.search(r"(\[[\s\S]*\])", text)
if arr:
cand = _remove_code_fences(arr.group(1))
p = _try_json_loads(cand)
if p is not None:
return p
cand2 = _attempt_simple_repairs(cand)
try:
return json.loads(cand2)
except Exception:
pass
# failed: dump raw text and log traceback
dump_path = _dump_raw_llm_output(text)
logger.error("extract_json_safely: failed to parse JSON. Raw output saved to: %s", dump_path)
return None
# ---------------- Model helpers (defensive) ----------------
def init_local_model():
global LLM_PIPELINE, TOKENIZER
if LLM_PIPELINE is not None:
return
try:
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
TOKENIZER = AutoTokenizer.from_pretrained(LOCAL_MODEL)
dtype = None
# choose dtype depending on CUDA availability
if torch.cuda.is_available():
dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL, device_map="auto", torch_dtype=dtype)
LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
logger.info("Local model initialized.")
except Exception as e:
logger.exception("Failed to load local model: %s", e)
LLM_PIPELINE = None
def local_llm_generate(prompt: str, max_tokens: int = 512) -> Dict[str, Any]:
if LLM_PIPELINE is None:
init_local_model()
if LLM_PIPELINE is None:
return {"text": "Model not loaded.", "raw": None}
try:
out = LLM_PIPELINE(prompt, max_new_tokens=max_tokens, return_full_text=False, do_sample=False)
# defensively extract text
text = ""
if isinstance(out, list) and out:
first = out[0]
if isinstance(first, dict) and "generated_text" in first:
text = first["generated_text"]
elif isinstance(first, str):
text = first
else:
text = str(first)
elif isinstance(out, str):
text = out
return {"text": text, "raw": out}
except Exception as e:
logger.exception("LLM generation error: %s", e)
return {"text": f"LLM error: {e}", "raw": None}
# ---------------- Zoho token utility ----------------
def _get_valid_token_headers() -> dict:
try:
r = requests.post("https://accounts.zoho.in/oauth/v2/token", params={
"refresh_token": REFRESH_TOKEN, "client_id": CLIENT_ID,
"client_secret": CLIENT_SECRET, "grant_type": "refresh_token"
}, timeout=15)
if r.status_code == 200:
tok = r.json().get("access_token")
return {"Authorization": f"Zoho-oauthtoken {tok}"}
else:
logger.error("Token refresh failed: %s", r.text)
return {}
except Exception as e:
logger.exception("Token refresh exception: %s", e)
return {}
# ---------------- MCP tool implementations ----------------
@mcp.tool()
def create_record(module_name: str, record_data: dict) -> str:
headers = _get_valid_token_headers()
if not headers:
return json.dumps({"status": "error", "message": "Auth failed"})
try:
r = requests.post(f"{API_BASE}/{module_name}", headers=headers, json={"data": [record_data]}, timeout=15)
return json.dumps(r.json()) if r.status_code in (200,201) else json.dumps({"status":"error","http_status":r.status_code,"text":r.text})
except Exception as e:
logger.exception("create_record failed: %s", e)
return json.dumps({"status":"error","message": str(e)})
@mcp.tool()
def create_invoice(data: dict) -> str:
headers = _get_valid_token_headers()
if not headers:
return json.dumps({"status": "error", "message": "Auth failed"})
try:
r = requests.post(f"{INVOICE_API_BASE}/invoices", headers=headers, params={"organization_id": ORGANIZATION_ID}, json=data, timeout=15)
return json.dumps(r.json()) if r.status_code in (200,201) else json.dumps({"status":"error","http_status": r.status_code, "text": r.text})
except Exception as e:
logger.exception("create_invoice failed: %s", e)
return json.dumps({"status":"error","message": str(e)})
# ---------------- Document processing ----------------
@mcp.tool()
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
"""Full flow: OCR -> LLM extraction -> KPI -> result with raw llm text for debugging"""
if not os.path.exists(file_path):
return {"status": "error", "error": f"File not found: {file_path}"}
raw_text, ocr_score = extract_text_and_conf(file_path)
if not raw_text:
return {"status": "error", "error": "OCR returned empty text."}
prompt = get_ocr_extraction_prompt(raw_text, page_count=1)
llm_res = local_llm_generate(prompt, max_tokens=512)
llm_text = llm_res.get("text", "")
parsed = extract_json_safely(llm_text)
kpis = {"score": 0, "rating": "Fail", "issues": ["Extraction failed"]}
if parsed:
# compute kpis basic heuristics (simple)
try:
total = parsed.get("totals", {}).get("grand_total")
semantic_ok = 1 if total else 0
kpis = {
"score": 80 if semantic_ok else 40,
"rating": "High" if semantic_ok else "Low",
"ocr_score": ocr_score,
"issues": [] if semantic_ok else ["grand_total missing"]
}
except Exception:
kpis["issues"].append("Error computing KPIs")
# If parse failed, persist raw LLM output path for debugging
raw_dump = None
if not parsed:
raw_dump = _dump_raw_llm_output(llm_text)
return {
"status": "success" if parsed else "partial",
"file": os.path.basename(file_path),
"extracted_data": parsed if parsed else None,
"raw_llm_output": llm_text,
"raw_llm_dump_path": raw_dump,
"kpis": kpis
}
# ---------------- Agent orchestration and chat ----------------
def parse_and_execute(model_text: str, history: list) -> str:
payload = extract_json_safely(model_text)
if not payload:
return "No valid tool JSON found in model output. Raw output saved for debugging."
if isinstance(payload, dict):
cmds = [payload]
else:
cmds = payload
results = []
last_contact_id = None
for cmd in cmds:
if not isinstance(cmd, dict):
continue
tool = cmd.get("tool")
args = cmd.get("args", {})
if tool == "create_record":
module = args.get("module_name", "Contacts")
record = args.get("record_data", {})
res = create_record(module, record)
results.append(f"create_record -> {res}")
# attempt to capture id
try:
rj = json.loads(res)
if isinstance(rj, dict) and "data" in rj and isinstance(rj["data"], list) and rj["data"]:
last_contact_id = rj["data"][0].get("details", {}).get("id")
except Exception:
pass
elif tool == "create_invoice":
invoice_payload = args
if not invoice_payload.get("customer_id") and last_contact_id:
invoice_payload["customer_id"] = last_contact_id
res = create_invoice(invoice_payload)
results.append(f"create_invoice -> {res}")
else:
results.append(f"Unknown tool: {tool}")
return "\n".join(results) if results else "No actionable tool calls executed."
def chat_logic(message: str, file_path: Optional[str], history: list) -> str:
if file_path:
logger.info("chat_logic: processing file %s", file_path)
doc = process_document(file_path)
status = doc.get("status")
if status in ("success", "partial"):
extracted = doc.get("extracted_data")
raw_llm = doc.get("raw_llm_output")
dump_path = doc.get("raw_llm_dump_path")
kpis = doc.get("kpis", {})
extracted_pretty = json.dumps(extracted, indent=2) if extracted else "(no structured JSON parsed)"
msg = (
f"### 📄 Extraction Result for **{doc.get('file')}**\n"
f"Status: {status}\n"
f"KPI Score: {kpis.get('score')} Rating: {kpis.get('rating')}\n"
f"OCR Confidence: {kpis.get('ocr_score', 'N/A')}\n\n"
f"Extracted JSON:\n```json\n{extracted_pretty}\n```\n"
)
if dump_path:
msg += f"\n⚠️ The model output could not be parsed into strict JSON. Raw LLM output saved to: `{dump_path}`\n"
msg += "You can inspect that file to debug the model response or prompt."
msg += "\nType 'Create Invoice' to persist when ready."
return msg
else:
return f"Error during processing: {doc.get('error')}"
# text-only interaction
hist_txt = "\n".join([f"U: {h[0]}\nA: {h[1]}" for h in history]) if history else ""
prompt = get_agent_prompt(hist_txt, message)
gen = local_llm_generate(prompt, max_tokens=256)
gen_text = gen.get("text", "")
tool_payload = extract_json_safely(gen_text)
if tool_payload:
return parse_and_execute(gen_text, history)
# if not a tool call, return the LLM text (or clear error)
if gen_text:
return gen_text
else:
return "No response from model."
# ---------------- Gradio wrapper ----------------
def chat_handler(msg, hist):
txt = msg.get("text", "")
files = msg.get("files", [])
path = files[0] if files else None
return chat_logic(txt, path, hist)
if __name__ == "__main__":
gc.collect()
demo = gr.ChatInterface(fn=chat_handler, multimodal=True)
demo.launch(server_name="0.0.0.0", server_port=7860)
|