File size: 13,850 Bytes
8f61322
 
 
 
 
 
1edb31f
 
8f61322
1edb31f
 
 
 
 
 
 
8f61322
 
1edb31f
8f61322
 
 
 
 
1edb31f
8f61322
 
 
1edb31f
 
 
 
 
 
 
 
 
8f61322
9ceaca4
1edb31f
 
9ceaca4
 
 
8f61322
9ceaca4
 
 
 
 
8f61322
9ceaca4
8f61322
9ceaca4
8f61322
9ceaca4
 
 
 
8f61322
 
 
 
 
 
 
 
 
 
 
 
 
9ceaca4
 
8f61322
 
 
 
 
 
9ceaca4
 
 
 
8f61322
9ceaca4
 
 
 
8f61322
 
 
9ceaca4
8f61322
 
 
 
 
9ceaca4
8f61322
9ceaca4
8f61322
9ceaca4
8f61322
9ceaca4
8f61322
9ceaca4
 
 
 
 
8f61322
 
 
 
 
9ceaca4
8f61322
 
 
 
 
9ceaca4
8f61322
9ceaca4
 
 
8f61322
 
 
 
 
 
 
 
9ceaca4
8f61322
 
9ceaca4
 
8f61322
 
 
9ceaca4
1edb31f
8f61322
1edb31f
 
9ceaca4
 
1edb31f
 
9ceaca4
1edb31f
8f61322
 
 
 
9ceaca4
1edb31f
8f61322
1edb31f
8f61322
9ceaca4
1edb31f
 
a30e4fc
 
 
 
1edb31f
9ceaca4
8f61322
 
 
9ceaca4
 
 
 
 
 
 
 
 
1edb31f
 
8f61322
 
1edb31f
8f61322
1edb31f
9ceaca4
 
 
 
8f61322
9ceaca4
8f61322
 
 
 
 
9ceaca4
8f61322
 
1edb31f
8f61322
1edb31f
 
8f61322
 
 
9ceaca4
8f61322
 
9ceaca4
 
8f61322
1edb31f
 
 
8f61322
 
 
9ceaca4
8f61322
 
9ceaca4
 
8f61322
1edb31f
8f61322
1edb31f
 
8f61322
9ceaca4
8f61322
9ceaca4
a30e4fc
9ceaca4
8f61322
9ceaca4
 
8f61322
 
9ceaca4
8f61322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edb31f
 
8f61322
1edb31f
8f61322
9ceaca4
8f61322
a30e4fc
1edb31f
 
8f61322
1edb31f
 
9ceaca4
8f61322
 
 
 
 
 
9ceaca4
1edb31f
 
 
 
9ceaca4
 
1edb31f
8f61322
1edb31f
 
8f61322
 
 
9ceaca4
8f61322
1edb31f
 
8f61322
 
9ceaca4
 
1edb31f
9ceaca4
 
 
 
1edb31f
9ceaca4
 
 
 
1edb31f
8f61322
1edb31f
9ceaca4
1edb31f
8f61322
1edb31f
8f61322
 
 
 
 
 
 
 
 
 
 
 
 
1edb31f
8f61322
 
 
 
 
1edb31f
8f61322
1edb31f
8f61322
9ceaca4
1edb31f
 
9ceaca4
 
 
 
 
 
8f61322
 
 
 
 
9ceaca4
8f61322
1edb31f
 
 
 
 
 
 
 
 
9ceaca4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# app.py — MCP server (refined)
# Key improvements:
# - Robust JSON extraction & repair
# - Detailed debug logging, write raw LLM output to /tmp when parse fails
# - Defensive LLM handling
# - Uses your ocr_engine.extract_text_and_conf

from mcp.server.fastmcp import FastMCP
from typing import Optional, Any, Dict
import requests
import os
import gradio as gr
import json
import re
import logging
import gc
import time
import traceback

# imports from local modules (these must exist)
from ocr_engine import extract_text_and_conf
from prompts import get_ocr_extraction_prompt, get_agent_prompt

# config (must exist)
try:
    from config import CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN, API_BASE, INVOICE_API_BASE, ORGANIZATION_ID, LOCAL_MODEL
except Exception as e:
    raise SystemExit("Missing config.py or required keys. Error: " + str(e))

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mcp_server")

mcp = FastMCP("ZohoCRMAgent")

LLM_PIPELINE = None
TOKENIZER = None

# ---------------- JSON extraction helpers ----------------
def _try_json_loads(text: str) -> Optional[Any]:
    try:
        return json.loads(text)
    except Exception:
        return None

def _remove_code_fences(s: str) -> str:
    s = re.sub(r"```(?:json)?\s*", "", s, flags=re.IGNORECASE)
    s = re.sub(r"\s*```$", "", s, flags=re.IGNORECASE)
    return s.strip()

def _attempt_simple_repairs(s: str) -> str:
    # keep printable chars
    s = "".join(ch for ch in s if (ch == "\n" or ch == "\t" or (32 <= ord(ch) <= 0x10FFFF)))
    # remove trailing commas
    s = re.sub(r",\s*(\}|])", r"\1", s)
    # convert single quotes if double quotes not present
    if '"' not in s and "'" in s:
        s = s.replace("'", '"')
    return s

def _dump_raw_llm_output(text: str) -> str:
    """Dump raw LLM output to a timestamped file for debugging and return path."""
    try:
        ts = int(time.time())
        path = f"/tmp/llm_output_{ts}.txt"
        with open(path, "w", encoding="utf-8") as f:
            f.write(text)
        logger.info("Wrote raw LLM output to %s for debugging", path)
        return path
    except Exception as e:
        logger.exception("Failed to write raw llm output: %s", e)
        return ""

def extract_json_safely(text: str) -> Optional[Any]:
    """
    Robustly extract JSON from LLM output.
    1) Try direct loads
    2) Try marker extraction <<<JSON>>> ... <<<END_JSON>>>
    3) Try largest balanced { ... } block
    4) Try array [...]
    On failure, write raw text to /tmp and return None.
    """
    if not text:
        return None

    # direct
    parsed = _try_json_loads(text)
    if parsed is not None:
        return parsed

    # marker-based extraction
    marker_re = re.compile(r"<<<JSON>>>\s*([\s\S]*?)\s*<<<END_JSON>>>", re.IGNORECASE)
    m = marker_re.search(text)
    if m:
        cand = _remove_code_fences(m.group(1))
        p = _try_json_loads(cand)
        if p is not None:
            return p
        cand2 = _attempt_simple_repairs(cand)
        try:
            return json.loads(cand2)
        except Exception as e:
            logger.warning("Marker JSON repair failed: %s", e)

    # fallback: largest balanced {...}
    stack = []
    spans = []
    for i, ch in enumerate(text):
        if ch == "{":
            stack.append(i)
        elif ch == "}" and stack:
            start = stack.pop()
            spans.append((start, i))
    spans = sorted(spans, key=lambda t: t[1]-t[0], reverse=True)
    for start, end in spans:
        cand = text[start:end+1].strip()
        if len(cand) < 20:
            continue
        cand = _remove_code_fences(cand)
        p = _try_json_loads(cand)
        if p is not None:
            return p
        cand2 = _attempt_simple_repairs(cand)
        try:
            return json.loads(cand2)
        except Exception:
            continue

    # try array
    arr = re.search(r"(\[[\s\S]*\])", text)
    if arr:
        cand = _remove_code_fences(arr.group(1))
        p = _try_json_loads(cand)
        if p is not None:
            return p
        cand2 = _attempt_simple_repairs(cand)
        try:
            return json.loads(cand2)
        except Exception:
            pass

    # failed: dump raw text and log traceback
    dump_path = _dump_raw_llm_output(text)
    logger.error("extract_json_safely: failed to parse JSON. Raw output saved to: %s", dump_path)
    return None

# ---------------- Model helpers (defensive) ----------------
def init_local_model():
    global LLM_PIPELINE, TOKENIZER
    if LLM_PIPELINE is not None:
        return
    try:
        from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
        import torch
        TOKENIZER = AutoTokenizer.from_pretrained(LOCAL_MODEL)
        dtype = None
        # choose dtype depending on CUDA availability
        if torch.cuda.is_available():
            dtype = torch.float16
        model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL, device_map="auto", torch_dtype=dtype)
        LLM_PIPELINE = pipeline("text-generation", model=model, tokenizer=TOKENIZER)
        logger.info("Local model initialized.")
    except Exception as e:
        logger.exception("Failed to load local model: %s", e)
        LLM_PIPELINE = None

def local_llm_generate(prompt: str, max_tokens: int = 512) -> Dict[str, Any]:
    if LLM_PIPELINE is None:
        init_local_model()
    if LLM_PIPELINE is None:
        return {"text": "Model not loaded.", "raw": None}
    try:
        out = LLM_PIPELINE(prompt, max_new_tokens=max_tokens, return_full_text=False, do_sample=False)
        # defensively extract text
        text = ""
        if isinstance(out, list) and out:
            first = out[0]
            if isinstance(first, dict) and "generated_text" in first:
                text = first["generated_text"]
            elif isinstance(first, str):
                text = first
            else:
                text = str(first)
        elif isinstance(out, str):
            text = out
        return {"text": text, "raw": out}
    except Exception as e:
        logger.exception("LLM generation error: %s", e)
        return {"text": f"LLM error: {e}", "raw": None}

# ---------------- Zoho token utility ----------------
def _get_valid_token_headers() -> dict:
    try:
        r = requests.post("https://accounts.zoho.in/oauth/v2/token", params={
            "refresh_token": REFRESH_TOKEN, "client_id": CLIENT_ID,
            "client_secret": CLIENT_SECRET, "grant_type": "refresh_token"
        }, timeout=15)
        if r.status_code == 200:
            tok = r.json().get("access_token")
            return {"Authorization": f"Zoho-oauthtoken {tok}"}
        else:
            logger.error("Token refresh failed: %s", r.text)
            return {}
    except Exception as e:
        logger.exception("Token refresh exception: %s", e)
        return {}

# ---------------- MCP tool implementations ----------------
@mcp.tool()
def create_record(module_name: str, record_data: dict) -> str:
    headers = _get_valid_token_headers()
    if not headers:
        return json.dumps({"status": "error", "message": "Auth failed"})
    try:
        r = requests.post(f"{API_BASE}/{module_name}", headers=headers, json={"data": [record_data]}, timeout=15)
        return json.dumps(r.json()) if r.status_code in (200,201) else json.dumps({"status":"error","http_status":r.status_code,"text":r.text})
    except Exception as e:
        logger.exception("create_record failed: %s", e)
        return json.dumps({"status":"error","message": str(e)})

@mcp.tool()
def create_invoice(data: dict) -> str:
    headers = _get_valid_token_headers()
    if not headers:
        return json.dumps({"status": "error", "message": "Auth failed"})
    try:
        r = requests.post(f"{INVOICE_API_BASE}/invoices", headers=headers, params={"organization_id": ORGANIZATION_ID}, json=data, timeout=15)
        return json.dumps(r.json()) if r.status_code in (200,201) else json.dumps({"status":"error","http_status": r.status_code, "text": r.text})
    except Exception as e:
        logger.exception("create_invoice failed: %s", e)
        return json.dumps({"status":"error","message": str(e)})

# ---------------- Document processing ----------------
@mcp.tool()
def process_document(file_path: str, target_module: Optional[str] = "Contacts") -> dict:
    """Full flow: OCR -> LLM extraction -> KPI -> result with raw llm text for debugging"""
    if not os.path.exists(file_path):
        return {"status": "error", "error": f"File not found: {file_path}"}

    raw_text, ocr_score = extract_text_and_conf(file_path)
    if not raw_text:
        return {"status": "error", "error": "OCR returned empty text."}

    prompt = get_ocr_extraction_prompt(raw_text, page_count=1)
    llm_res = local_llm_generate(prompt, max_tokens=512)
    llm_text = llm_res.get("text", "")

    parsed = extract_json_safely(llm_text)
    kpis = {"score": 0, "rating": "Fail", "issues": ["Extraction failed"]}
    if parsed:
        # compute kpis basic heuristics (simple)
        try:
            total = parsed.get("totals", {}).get("grand_total")
            semantic_ok = 1 if total else 0
            kpis = {
                "score": 80 if semantic_ok else 40,
                "rating": "High" if semantic_ok else "Low",
                "ocr_score": ocr_score,
                "issues": [] if semantic_ok else ["grand_total missing"]
            }
        except Exception:
            kpis["issues"].append("Error computing KPIs")

    # If parse failed, persist raw LLM output path for debugging
    raw_dump = None
    if not parsed:
        raw_dump = _dump_raw_llm_output(llm_text)

    return {
        "status": "success" if parsed else "partial",
        "file": os.path.basename(file_path),
        "extracted_data": parsed if parsed else None,
        "raw_llm_output": llm_text,
        "raw_llm_dump_path": raw_dump,
        "kpis": kpis
    }

# ---------------- Agent orchestration and chat ----------------
def parse_and_execute(model_text: str, history: list) -> str:
    payload = extract_json_safely(model_text)
    if not payload:
        return "No valid tool JSON found in model output. Raw output saved for debugging."

    if isinstance(payload, dict):
        cmds = [payload]
    else:
        cmds = payload

    results = []
    last_contact_id = None

    for cmd in cmds:
        if not isinstance(cmd, dict):
            continue
        tool = cmd.get("tool")
        args = cmd.get("args", {})

        if tool == "create_record":
            module = args.get("module_name", "Contacts")
            record = args.get("record_data", {})
            res = create_record(module, record)
            results.append(f"create_record -> {res}")
            # attempt to capture id
            try:
                rj = json.loads(res)
                if isinstance(rj, dict) and "data" in rj and isinstance(rj["data"], list) and rj["data"]:
                    last_contact_id = rj["data"][0].get("details", {}).get("id")
            except Exception:
                pass

        elif tool == "create_invoice":
            invoice_payload = args
            if not invoice_payload.get("customer_id") and last_contact_id:
                invoice_payload["customer_id"] = last_contact_id
            res = create_invoice(invoice_payload)
            results.append(f"create_invoice -> {res}")

        else:
            results.append(f"Unknown tool: {tool}")

    return "\n".join(results) if results else "No actionable tool calls executed."

def chat_logic(message: str, file_path: Optional[str], history: list) -> str:
    if file_path:
        logger.info("chat_logic: processing file %s", file_path)
        doc = process_document(file_path)
        status = doc.get("status")
        if status in ("success", "partial"):
            extracted = doc.get("extracted_data")
            raw_llm = doc.get("raw_llm_output")
            dump_path = doc.get("raw_llm_dump_path")
            kpis = doc.get("kpis", {})
            extracted_pretty = json.dumps(extracted, indent=2) if extracted else "(no structured JSON parsed)"
            msg = (
                f"### 📄 Extraction Result for **{doc.get('file')}**\n"
                f"Status: {status}\n"
                f"KPI Score: {kpis.get('score')} Rating: {kpis.get('rating')}\n"
                f"OCR Confidence: {kpis.get('ocr_score', 'N/A')}\n\n"
                f"Extracted JSON:\n```json\n{extracted_pretty}\n```\n"
            )
            if dump_path:
                msg += f"\n⚠️ The model output could not be parsed into strict JSON. Raw LLM output saved to: `{dump_path}`\n"
                msg += "You can inspect that file to debug the model response or prompt."
            msg += "\nType 'Create Invoice' to persist when ready."
            return msg
        else:
            return f"Error during processing: {doc.get('error')}"

    # text-only interaction
    hist_txt = "\n".join([f"U: {h[0]}\nA: {h[1]}" for h in history]) if history else ""
    prompt = get_agent_prompt(hist_txt, message)
    gen = local_llm_generate(prompt, max_tokens=256)
    gen_text = gen.get("text", "")

    tool_payload = extract_json_safely(gen_text)
    if tool_payload:
        return parse_and_execute(gen_text, history)

    # if not a tool call, return the LLM text (or clear error)
    if gen_text:
        return gen_text
    else:
        return "No response from model."

# ---------------- Gradio wrapper ----------------
def chat_handler(msg, hist):
    txt = msg.get("text", "")
    files = msg.get("files", [])
    path = files[0] if files else None
    return chat_logic(txt, path, hist)

if __name__ == "__main__":
    gc.collect()
    demo = gr.ChatInterface(fn=chat_handler, multimodal=True)
    demo.launch(server_name="0.0.0.0", server_port=7860)