wbrooks commited on
Commit
b6127b6
·
1 Parent(s): bccb1fa

removed debugging messages now that search is working

Browse files
Files changed (2) hide show
  1. app.py +0 -2
  2. src/embeddings_search.py +3 -4
app.py CHANGED
@@ -23,8 +23,6 @@ tfidf_query_docs = create_tfidf_search_function(
23
  vectorizer_path = tfidf_vectorizer_path,
24
  model_name = "facebook/fasttext-en-vectors")
25
 
26
- print("generated the search functions!")
27
-
28
  app = FastAPI()
29
 
30
 
 
23
  vectorizer_path = tfidf_vectorizer_path,
24
  model_name = "facebook/fasttext-en-vectors")
25
 
 
 
26
  app = FastAPI()
27
 
28
 
src/embeddings_search.py CHANGED
@@ -50,7 +50,6 @@ def sbert_query_factory(corpus_embeddings_df: pl.DataFrame, model: SentenceTrans
50
  Returns:
51
  Callable[[str], pl.DataFrame]: Function to compare the query string to the corpus and return results sorted by the cosine similarity.
52
  """
53
- print("starting factory")
54
 
55
  def do_sbert_query(query: str) -> pl.DataFrame:
56
  """
@@ -127,13 +126,13 @@ def create_embeddings_search_function_from_embeddings_df(model_name: str, embedd
127
  Callable[[str], pl.DataFrame]: Function to compare the query string to the corpus and return results sorted by the cosine similarity.
128
 
129
  """
130
- print("starting to build embeddings search")
131
  # Instantiate the sentence-transformer model:
132
  sentence_model = SentenceTransformer(model_name).to(device = device)
133
- print("instantiated sentence-transformers model")
134
  # import the embeddings CSVs
135
  block_embeddings_df = pl.read_parquet(embeddings_df_path)
136
- print("read the embeddings to a data frame")
137
  # call the factory to make the search function and return it
138
  return sbert_query_factory(corpus_embeddings_df = block_embeddings_df, model = sentence_model)
139
 
 
50
  Returns:
51
  Callable[[str], pl.DataFrame]: Function to compare the query string to the corpus and return results sorted by the cosine similarity.
52
  """
 
53
 
54
  def do_sbert_query(query: str) -> pl.DataFrame:
55
  """
 
126
  Callable[[str], pl.DataFrame]: Function to compare the query string to the corpus and return results sorted by the cosine similarity.
127
 
128
  """
129
+
130
  # Instantiate the sentence-transformer model:
131
  sentence_model = SentenceTransformer(model_name).to(device = device)
132
+
133
  # import the embeddings CSVs
134
  block_embeddings_df = pl.read_parquet(embeddings_df_path)
135
+
136
  # call the factory to make the search function and return it
137
  return sbert_query_factory(corpus_embeddings_df = block_embeddings_df, model = sentence_model)
138