wolfofbackstreet commited on
Commit
3c9009e
·
verified ·
1 Parent(s): 37d69ab

Upload 2 files

Browse files
Files changed (2) hide show
  1. Dockerfile +0 -3
  2. app.py +14 -15
Dockerfile CHANGED
@@ -31,9 +31,6 @@ ENV OPENVINO_TELEMETRY_DIR=/app/openvino_cache
31
  RUN python -c "from optimum.intel.openvino import OVStableDiffusionPipeline; \
32
  OVStableDiffusionPipeline.from_pretrained('rupeshs/hyper-sd-sdxl-1-step-openvino-int8', ov_config={'CACHE_DIR': '/app/cache/openvino'})"
33
 
34
- # Pre-download a default LoRA model
35
- RUN python -c "from diffusers import LoraLoaderMixin; \
36
- LoraLoaderMixin.download_lora_weights('latent-consistency/lcm-lora-sdxl', cache_dir='/app/cache/huggingface')"
37
 
38
  # Copy application code
39
  COPY app.py .
 
31
  RUN python -c "from optimum.intel.openvino import OVStableDiffusionPipeline; \
32
  OVStableDiffusionPipeline.from_pretrained('rupeshs/hyper-sd-sdxl-1-step-openvino-int8', ov_config={'CACHE_DIR': '/app/cache/openvino'})"
33
 
 
 
 
34
 
35
  # Copy application code
36
  COPY app.py .
app.py CHANGED
@@ -1,7 +1,6 @@
1
  import os
2
  from flask import Flask, request, jsonify, send_file
3
  from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
4
- from diffusers import LoraLoaderMixin
5
  from PIL import Image
6
  import io
7
  import torch
@@ -46,23 +45,23 @@ def generate_image():
46
  height = data.get('height', 512)
47
  num_inference_steps = data.get('num_inference_steps', 4)
48
  guidance_scale = data.get('guidance_scale', 1.0)
49
- lora_model_id = data.get('lora_model_id', None)
50
- lora_weight = data.get('lora_weight', 0.8)
51
 
52
  # Load LoRA weights if specified
53
  local_pipeline = pipeline
54
- if lora_model_id:
55
- try:
56
- local_pipeline = LoraLoaderMixin.load_lora_weights(
57
- local_pipeline,
58
- lora_model_id,
59
- lora_scale=lora_weight,
60
- cache_dir="/app/cache/huggingface"
61
- )
62
- logger.info(f"LoRA model {lora_model_id} loaded successfully")
63
- except Exception as e:
64
- logger.error(f"Failed to load LoRA model: {str(e)}")
65
- return jsonify({'error': f"Failed to load LoRA model: {str(e)}"}), 400
66
 
67
  # Generate image
68
  image = local_pipeline(
 
1
  import os
2
  from flask import Flask, request, jsonify, send_file
3
  from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
 
4
  from PIL import Image
5
  import io
6
  import torch
 
45
  height = data.get('height', 512)
46
  num_inference_steps = data.get('num_inference_steps', 4)
47
  guidance_scale = data.get('guidance_scale', 1.0)
48
+ # lora_model_id = data.get('lora_model_id', None)
49
+ # lora_weight = data.get('lora_weight', 0.8)
50
 
51
  # Load LoRA weights if specified
52
  local_pipeline = pipeline
53
+ # if lora_model_id:
54
+ # try:
55
+ # local_pipeline = LoraLoaderMixin.load_lora_weights(
56
+ # local_pipeline,
57
+ # lora_model_id,
58
+ # lora_scale=lora_weight,
59
+ # cache_dir="/app/cache/huggingface"
60
+ # )
61
+ # logger.info(f"LoRA model {lora_model_id} loaded successfully")
62
+ # except Exception as e:
63
+ # logger.error(f"Failed to load LoRA model: {str(e)}")
64
+ # return jsonify({'error': f"Failed to load LoRA model: {str(e)}"}), 400
65
 
66
  # Generate image
67
  image = local_pipeline(