Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- Dockerfile +0 -3
- app.py +14 -15
Dockerfile
CHANGED
|
@@ -31,9 +31,6 @@ ENV OPENVINO_TELEMETRY_DIR=/app/openvino_cache
|
|
| 31 |
RUN python -c "from optimum.intel.openvino import OVStableDiffusionPipeline; \
|
| 32 |
OVStableDiffusionPipeline.from_pretrained('rupeshs/hyper-sd-sdxl-1-step-openvino-int8', ov_config={'CACHE_DIR': '/app/cache/openvino'})"
|
| 33 |
|
| 34 |
-
# Pre-download a default LoRA model
|
| 35 |
-
RUN python -c "from diffusers import LoraLoaderMixin; \
|
| 36 |
-
LoraLoaderMixin.download_lora_weights('latent-consistency/lcm-lora-sdxl', cache_dir='/app/cache/huggingface')"
|
| 37 |
|
| 38 |
# Copy application code
|
| 39 |
COPY app.py .
|
|
|
|
| 31 |
RUN python -c "from optimum.intel.openvino import OVStableDiffusionPipeline; \
|
| 32 |
OVStableDiffusionPipeline.from_pretrained('rupeshs/hyper-sd-sdxl-1-step-openvino-int8', ov_config={'CACHE_DIR': '/app/cache/openvino'})"
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Copy application code
|
| 36 |
COPY app.py .
|
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
from flask import Flask, request, jsonify, send_file
|
| 3 |
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
| 4 |
-
from diffusers import LoraLoaderMixin
|
| 5 |
from PIL import Image
|
| 6 |
import io
|
| 7 |
import torch
|
|
@@ -46,23 +45,23 @@ def generate_image():
|
|
| 46 |
height = data.get('height', 512)
|
| 47 |
num_inference_steps = data.get('num_inference_steps', 4)
|
| 48 |
guidance_scale = data.get('guidance_scale', 1.0)
|
| 49 |
-
lora_model_id = data.get('lora_model_id', None)
|
| 50 |
-
lora_weight = data.get('lora_weight', 0.8)
|
| 51 |
|
| 52 |
# Load LoRA weights if specified
|
| 53 |
local_pipeline = pipeline
|
| 54 |
-
if lora_model_id:
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
# Generate image
|
| 68 |
image = local_pipeline(
|
|
|
|
| 1 |
import os
|
| 2 |
from flask import Flask, request, jsonify, send_file
|
| 3 |
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import io
|
| 6 |
import torch
|
|
|
|
| 45 |
height = data.get('height', 512)
|
| 46 |
num_inference_steps = data.get('num_inference_steps', 4)
|
| 47 |
guidance_scale = data.get('guidance_scale', 1.0)
|
| 48 |
+
# lora_model_id = data.get('lora_model_id', None)
|
| 49 |
+
# lora_weight = data.get('lora_weight', 0.8)
|
| 50 |
|
| 51 |
# Load LoRA weights if specified
|
| 52 |
local_pipeline = pipeline
|
| 53 |
+
# if lora_model_id:
|
| 54 |
+
# try:
|
| 55 |
+
# local_pipeline = LoraLoaderMixin.load_lora_weights(
|
| 56 |
+
# local_pipeline,
|
| 57 |
+
# lora_model_id,
|
| 58 |
+
# lora_scale=lora_weight,
|
| 59 |
+
# cache_dir="/app/cache/huggingface"
|
| 60 |
+
# )
|
| 61 |
+
# logger.info(f"LoRA model {lora_model_id} loaded successfully")
|
| 62 |
+
# except Exception as e:
|
| 63 |
+
# logger.error(f"Failed to load LoRA model: {str(e)}")
|
| 64 |
+
# return jsonify({'error': f"Failed to load LoRA model: {str(e)}"}), 400
|
| 65 |
|
| 66 |
# Generate image
|
| 67 |
image = local_pipeline(
|