Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import ViTImageProcessor, AutoModelForImageClassification | |
| from PIL import Image | |
| import requests | |
| # Load the model and processor | |
| processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
| model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector') | |
| # Define prediction function | |
| def predict_image(image_url): | |
| try: | |
| # Load image from URL | |
| image = Image.open(requests.get(image_url, stream=True).raw) | |
| # Process the image and make prediction | |
| inputs = processor(images=image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| # Get predicted class | |
| predicted_class_idx = logits.argmax(-1).item() | |
| predicted_label = model.config.id2label[predicted_class_idx] | |
| return predicted_label | |
| except Exception as e: | |
| return str(e) | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=predict_image, | |
| inputs=gr.Textbox(label="Image URL"), | |
| outputs=gr.Textbox(label="Predicted Class"), | |
| title="NSFW Image Classifier" | |
| ) | |
| # Launch the interface | |
| iface.launch() |