Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
| 3 |
from PIL import Image
|
| 4 |
-
import io
|
| 5 |
import requests
|
| 6 |
-
from flask import Flask, request, jsonify
|
| 7 |
|
| 8 |
# Load the model and processor
|
| 9 |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
| 10 |
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
| 11 |
|
| 12 |
# Define prediction function
|
| 13 |
-
def predict_image(
|
| 14 |
try:
|
|
|
|
|
|
|
|
|
|
| 15 |
# Process the image and make prediction
|
| 16 |
inputs = processor(images=image, return_tensors="pt")
|
| 17 |
outputs = model(**inputs)
|
|
@@ -28,43 +29,10 @@ def predict_image(image):
|
|
| 28 |
# Create Gradio interface
|
| 29 |
iface = gr.Interface(
|
| 30 |
fn=predict_image,
|
| 31 |
-
inputs=gr.
|
| 32 |
outputs=gr.Textbox(label="Predicted Class"),
|
| 33 |
title="NSFW Image Classifier"
|
| 34 |
)
|
| 35 |
|
| 36 |
-
# Launch the
|
| 37 |
-
iface.launch()
|
| 38 |
-
|
| 39 |
-
# Flask app for API endpoint
|
| 40 |
-
app = Flask(__name__)
|
| 41 |
-
|
| 42 |
-
@app.route('/predict', methods=['POST'])
|
| 43 |
-
def predict():
|
| 44 |
-
if 'file' not in request.files:
|
| 45 |
-
return jsonify({'error': 'No file part'}), 400
|
| 46 |
-
|
| 47 |
-
file = request.files['file']
|
| 48 |
-
if file.filename == '':
|
| 49 |
-
return jsonify({'error': 'No selected file'}), 400
|
| 50 |
-
|
| 51 |
-
try:
|
| 52 |
-
# Load image from the uploaded file
|
| 53 |
-
image = Image.open(file.stream)
|
| 54 |
-
|
| 55 |
-
# Process the image and make prediction
|
| 56 |
-
inputs = processor(images=image, return_tensors="pt")
|
| 57 |
-
outputs = model(**inputs)
|
| 58 |
-
logits = outputs.logits
|
| 59 |
-
|
| 60 |
-
# Get predicted class
|
| 61 |
-
predicted_class_idx = logits.argmax(-1).item()
|
| 62 |
-
predicted_label = model.config.id2label[predicted_class_idx]
|
| 63 |
-
|
| 64 |
-
return jsonify({'predicted_class': predicted_label})
|
| 65 |
-
except Exception as e:
|
| 66 |
-
return jsonify({'error': str(e)}), 500
|
| 67 |
-
|
| 68 |
-
# Run Flask app
|
| 69 |
-
if __name__ == '__main__':
|
| 70 |
-
app.run(port=5000)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import ViTImageProcessor, AutoModelForImageClassification
|
| 3 |
from PIL import Image
|
|
|
|
| 4 |
import requests
|
|
|
|
| 5 |
|
| 6 |
# Load the model and processor
|
| 7 |
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
| 8 |
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
|
| 9 |
|
| 10 |
# Define prediction function
|
| 11 |
+
def predict_image(image_url):
|
| 12 |
try:
|
| 13 |
+
# Load image from URL
|
| 14 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 15 |
+
|
| 16 |
# Process the image and make prediction
|
| 17 |
inputs = processor(images=image, return_tensors="pt")
|
| 18 |
outputs = model(**inputs)
|
|
|
|
| 29 |
# Create Gradio interface
|
| 30 |
iface = gr.Interface(
|
| 31 |
fn=predict_image,
|
| 32 |
+
inputs=gr.Textbox(label="Image URL", placeholder="Enter image URL here"),
|
| 33 |
outputs=gr.Textbox(label="Predicted Class"),
|
| 34 |
title="NSFW Image Classifier"
|
| 35 |
)
|
| 36 |
|
| 37 |
+
# Launch the interface
|
| 38 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|