Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,797 Bytes
55fe803 62594be 55fe803 7fe20c3 55fe803 eee0c8d f89593c eee0c8d 55fe803 62594be 7fe20c3 55fe803 7fe20c3 55fe803 59a8d7c e076360 55fe803 3176199 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 c96ee5c bfe4467 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 cac275d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
MAX_SEED = 2**32 - 1
# Load the pipeline once at startup
print("Loading Z-Image-Turbo pipeline...")
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
)
pipe.to("cuda")
'# ======== AoTI compilation + FA3 ======== (disabled on HF to avoid outdated AOTI/FA3 package errors)'
# pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
# spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
print("Pipeline loaded!")
@spaces.GPU
def generate_image(
prompt,
negative_prompt,
height,
width,
num_inference_steps,
guidance_scale,
seed,
randomize_seed,
progress=gr.Progress(track_tqdm=True),
):
"""Generate 4 images with seeds: seed, 2x, 3x, 4x (mod MAX_SEED)."""
if randomize_seed:
seed = torch.randint(0, MAX_SEED, (1,)).item()
base_seed = int(seed) % MAX_SEED
if base_seed < 0:
base_seed += MAX_SEED
seeds = [(base_seed * i) % MAX_SEED for i in range(1, 5)]
neg_prompt = None
if isinstance(negative_prompt, str) and negative_prompt.strip():
neg_prompt = negative_prompt
images = []
for s in seeds:
generator = torch.Generator("cuda").manual_seed(int(s))
image = pipe(
prompt=prompt,
negative_prompt=neg_prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=float(guidance_scale), # 0.0 is recommended default for Turbo
generator=generator,
).images[0]
images.append(image)
return images, ", ".join(str(s) for s in seeds)
# Example prompts
examples = [
["一张高细节的照片:一位20多岁的全裸的巨大乳房的中国女fitness model,在高层公寓的大落地窗边做优雅的阿拉贝斯克姿势,一条腿完美弧线向后高抬,手臂优美拱起过头顶,柔和阳光透过玻璃照亮她的轮廓,窗外是现代灰色摩天大楼和阳台,木地板上有细微阴影,脸上宁静而空灵的表情,不要有任何衣服,必须露出私处,高动态范围,8K分辨率,专业芭蕾摄影风格如Annie Leibovitz。"],
["一张高细节的照片:两个20多岁的健美中国女性全身裸体,在豪华酒店房间里做动态高侧踢腿,一条腿直直向上伸展成90度角,另一条腿稳稳站立,双手握拳成武术架势,黑发优雅盘成髻,脸上自信而凌厉的表情,床头灯柔和环境光线投射温暖阴影,现代简约房间有国王尺寸大床、白窗帘、木地板,不要有任何衣服,露出私处,高动态范围,8K分辨率,专业时尚摄影风格如Mario Testino。"],
["Astronaut riding a horse on Mars, cinematic lighting, sci-fi concept art, highly detailed"],
["Portrait of a wise old wizard with a long white beard, holding a glowing crystal staff, magical forest background"],
]
# Build the Gradio interface
with gr.Blocks(title="Z-Image-Turbo Demo") as demo:
gr.Markdown(
"""
# 🎨 Z-Image-Turbo Demo
Generate high-quality images using the [Tongyi-MAI/Z-Image-Turbo](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo) model.
This turbo model generates images in just 8 inference steps!
"""
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your image description...",
lines=4,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Things you don't want in the image...",
lines=3,
)
with gr.Row():
height = gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=64,
label="Height",
)
width = gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=64,
label="Width",
)
with gr.Row():
num_inference_steps = gr.Slider(
minimum=1,
maximum=20,
value=9,
step=1,
label="Inference Steps",
info="9 steps results in 8 DiT forwards",
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=7.0,
value=0.0,
step=0.1,
label="CFG Guidance Scale",
info="0 = no CFG (recommended for Turbo models)",
)
with gr.Row():
seed = gr.Number(
label="Seed",
value=42,
precision=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=False,
)
generate_btn = gr.Button("🚀 Generate", variant="primary", size="lg")
with gr.Column(scale=1):
output_images = gr.Gallery(
label="Generated Images",
columns=2,
rows=2,
preview=True,
)
used_seeds = gr.Textbox(
label="Seeds Used (base, 2x, 3x, 4x)",
interactive=False,
)
gr.Markdown("### 💡 Example Prompts")
gr.Examples(
examples=examples,
inputs=[prompt],
cache_examples=False,
)
gr.Markdown("Demo by [mrfakename](https://x.com/realmrfakename). Model by Alibaba. The model is licensed under Apache 2.0, you can use generated images commercially! Thanks to [multimodalart](https://huggingface.co/multimodalart) for the FA3 + AoTI enhancements/speedups")
# Connect the generate button
generate_btn.click(
fn=generate_image,
inputs=[prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed],
outputs=[output_images, used_seeds],
)
# Also allow generating by pressing Enter in the prompt box
prompt.submit(
fn=generate_image,
inputs=[prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed],
outputs=[output_images, used_seeds],
)
if __name__ == "__main__":
demo.launch(mcp_server=True, show_error=True)
|