Update app.py
Browse files
app.py
CHANGED
|
@@ -1,54 +1,212 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
DATASET_NAME = "sumuks/fineweb-10BT-annotated"
|
| 5 |
SPLIT = "train"
|
| 6 |
|
|
|
|
| 7 |
SCORE_COLUMN = "score"
|
| 8 |
TEXT_COLUMN = "text"
|
| 9 |
ID_COLUMN = "id"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
dataset = None
|
| 16 |
-
load_error = str(e)
|
| 17 |
-
else:
|
| 18 |
-
load_error = None
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
def get_examples_by_score(score: int, n_examples: int = 5):
|
| 22 |
-
if
|
| 23 |
-
return
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
n = min(len(subset), n_examples)
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
text = item.get(TEXT_COLUMN, "")
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
def
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from datasets import load_dataset
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
# Available datasets
|
| 6 |
+
DATASETS = {
|
| 7 |
+
"Main Dataset": "sumuks/fineweb-10BT-annotated",
|
| 8 |
+
"Ablation Dataset": "sumuks/fineweb-10BT-annotated-ablation-1"
|
| 9 |
+
}
|
| 10 |
|
|
|
|
| 11 |
SPLIT = "train"
|
| 12 |
|
| 13 |
+
# Column names (from build.py)
|
| 14 |
SCORE_COLUMN = "score"
|
| 15 |
TEXT_COLUMN = "text"
|
| 16 |
ID_COLUMN = "id"
|
| 17 |
+
SUMMARY_COLUMN = "summary"
|
| 18 |
+
JUSTIFICATION_COLUMN = "justification"
|
| 19 |
+
THINKING_COLUMN = "thinking"
|
| 20 |
+
MODEL_COLUMN = "annotation_model"
|
| 21 |
+
DATE_COLUMN = "annotation_date"
|
| 22 |
|
| 23 |
+
# Global state
|
| 24 |
+
current_dataset = None
|
| 25 |
+
dataset_name = None
|
| 26 |
+
seen_ids = set()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
def load_selected_dataset(selected_dataset):
|
| 29 |
+
global current_dataset, dataset_name, seen_ids
|
| 30 |
+
dataset_name = DATASETS[selected_dataset]
|
| 31 |
+
seen_ids = set() # Reset seen examples when switching datasets
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
current_dataset = load_dataset(dataset_name, split=SPLIT)
|
| 35 |
+
return f"✅ Loaded {len(current_dataset)} examples from {dataset_name}"
|
| 36 |
+
except Exception as e:
|
| 37 |
+
current_dataset = None
|
| 38 |
+
return f"❌ Failed to load {dataset_name}: {str(e)}"
|
| 39 |
|
| 40 |
+
def get_examples_by_score(score: int, n_examples: int = 5, show_details: bool = False):
|
| 41 |
+
if current_dataset is None:
|
| 42 |
+
return "Please select and load a dataset first."
|
| 43 |
+
|
| 44 |
+
subset = current_dataset.filter(lambda x: x.get(SCORE_COLUMN) == score)
|
| 45 |
+
if len(subset) == 0:
|
| 46 |
+
return "No examples found for this score."
|
| 47 |
+
|
| 48 |
n = min(len(subset), n_examples)
|
| 49 |
+
examples_text = []
|
| 50 |
+
|
| 51 |
+
# Randomly sample indices instead of taking the first n
|
| 52 |
+
total_available = len(subset)
|
| 53 |
+
random_indices = random.sample(range(total_available), n)
|
| 54 |
+
|
| 55 |
+
for idx in random_indices:
|
| 56 |
+
item = subset[idx]
|
| 57 |
+
example_id = item.get(ID_COLUMN, "Unknown")
|
| 58 |
text = item.get(TEXT_COLUMN, "")
|
| 59 |
+
summary = item.get(SUMMARY_COLUMN, "")
|
| 60 |
+
justification = item.get(JUSTIFICATION_COLUMN, "")
|
| 61 |
+
thinking = item.get(THINKING_COLUMN, "")
|
| 62 |
+
model = item.get(MODEL_COLUMN, "")
|
| 63 |
+
date = item.get(DATE_COLUMN, "")
|
| 64 |
+
|
| 65 |
+
# Build the example display
|
| 66 |
+
example_display = f"**Document ID:** {example_id}\n\n"
|
| 67 |
+
|
| 68 |
+
if show_details and summary:
|
| 69 |
+
example_display += f"**Summary:** {summary}\n\n"
|
| 70 |
+
|
| 71 |
+
if show_details and justification:
|
| 72 |
+
example_display += f"**Justification:** {justification}\n\n"
|
| 73 |
+
|
| 74 |
+
if show_details and thinking:
|
| 75 |
+
example_display += f"**Thinking Process:** {thinking}\n\n"
|
| 76 |
+
|
| 77 |
+
if show_details and model:
|
| 78 |
+
example_display += f"**Model:** {model} | **Date:** {date}\n\n"
|
| 79 |
+
|
| 80 |
+
example_display += f"**Text:**\n{text}\n\n---\n"
|
| 81 |
+
examples_text.append(example_display)
|
| 82 |
+
|
| 83 |
+
return "\n".join(examples_text)
|
| 84 |
|
| 85 |
+
def get_random_unseen_example(show_details: bool = False):
|
| 86 |
+
if current_dataset is None:
|
| 87 |
+
return "Please select and load a dataset first."
|
| 88 |
+
|
| 89 |
+
# Get all IDs we haven't seen
|
| 90 |
+
all_ids = set(current_dataset[ID_COLUMN])
|
| 91 |
+
unseen_ids = all_ids - seen_ids
|
| 92 |
+
|
| 93 |
+
if not unseen_ids:
|
| 94 |
+
# Reset if we've seen everything
|
| 95 |
+
seen_ids.clear()
|
| 96 |
+
unseen_ids = all_ids
|
| 97 |
+
if not unseen_ids:
|
| 98 |
+
return "No examples available in dataset."
|
| 99 |
+
|
| 100 |
+
# Pick random unseen ID
|
| 101 |
+
random_id = random.choice(list(unseen_ids))
|
| 102 |
+
seen_ids.add(random_id)
|
| 103 |
+
|
| 104 |
+
# Find the item with this ID
|
| 105 |
+
item_idx = current_dataset[ID_COLUMN].index(random_id)
|
| 106 |
+
item = current_dataset[item_idx]
|
| 107 |
+
|
| 108 |
+
# Extract data
|
| 109 |
+
text = item.get(TEXT_COLUMN, "")
|
| 110 |
+
score = item.get(SCORE_COLUMN, "N/A")
|
| 111 |
+
summary = item.get(SUMMARY_COLUMN, "")
|
| 112 |
+
justification = item.get(JUSTIFICATION_COLUMN, "")
|
| 113 |
+
thinking = item.get(THINKING_COLUMN, "")
|
| 114 |
+
model = item.get(MODEL_COLUMN, "")
|
| 115 |
+
date = item.get(DATE_COLUMN, "")
|
| 116 |
+
|
| 117 |
+
# Build display
|
| 118 |
+
display = f"**Document ID:** {random_id} | **Score:** {score}\n\n"
|
| 119 |
+
|
| 120 |
+
if show_details and summary:
|
| 121 |
+
display += f"**Summary:** {summary}\n\n"
|
| 122 |
+
|
| 123 |
+
if show_details and justification:
|
| 124 |
+
display += f"**Justification:** {justification}\n\n"
|
| 125 |
+
|
| 126 |
+
if show_details and thinking:
|
| 127 |
+
display += f"**Thinking Process:** {thinking}\n\n"
|
| 128 |
+
|
| 129 |
+
if show_details and model:
|
| 130 |
+
display += f"**Model:** {model} | **Date:** {date}\n\n"
|
| 131 |
+
|
| 132 |
+
display += f"**Text:**\n{text}"
|
| 133 |
+
|
| 134 |
+
return display
|
| 135 |
|
| 136 |
+
def build_interface():
|
| 137 |
+
with gr.Blocks(theme="default", title="Dataset Inspector") as demo:
|
| 138 |
+
gr.Markdown("# 📊 Expert Content Classification Dataset Inspector")
|
| 139 |
+
|
| 140 |
+
with gr.Row():
|
| 141 |
+
with gr.Column(scale=2):
|
| 142 |
+
dataset_dropdown = gr.Dropdown(
|
| 143 |
+
choices=list(DATASETS.keys()),
|
| 144 |
+
label="Select Dataset",
|
| 145 |
+
value="Main Dataset"
|
| 146 |
+
)
|
| 147 |
+
with gr.Column(scale=1):
|
| 148 |
+
load_btn = gr.Button("Load Dataset", variant="primary")
|
| 149 |
+
|
| 150 |
+
status_display = gr.Markdown("")
|
| 151 |
+
|
| 152 |
+
with gr.Row():
|
| 153 |
+
show_details_global = gr.Checkbox(
|
| 154 |
+
label="Show annotation details (summary, justification, thinking)",
|
| 155 |
+
value=False
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
with gr.Tabs():
|
| 159 |
+
# Random sampling tab
|
| 160 |
+
with gr.Tab("🎲 Random Sampling"):
|
| 161 |
+
gr.Markdown("Sample random examples you haven't seen before")
|
| 162 |
+
with gr.Row():
|
| 163 |
+
sample_btn = gr.Button("Get Random Example", variant="secondary", size="lg")
|
| 164 |
+
random_output = gr.Markdown("")
|
| 165 |
+
|
| 166 |
+
# Score-based browsing tabs
|
| 167 |
+
for score in range(6):
|
| 168 |
+
with gr.Tab(f"⭐ Score {score}"):
|
| 169 |
+
gr.Markdown(f"Browse examples with quality score {score}")
|
| 170 |
+
with gr.Row():
|
| 171 |
+
n_examples = gr.Slider(
|
| 172 |
+
minimum=1,
|
| 173 |
+
maximum=20,
|
| 174 |
+
value=3,
|
| 175 |
+
step=1,
|
| 176 |
+
label="Number of examples"
|
| 177 |
+
)
|
| 178 |
+
show_btn = gr.Button(f"Show Score {score} Examples", variant="secondary")
|
| 179 |
+
|
| 180 |
+
score_output = gr.Markdown("")
|
| 181 |
+
|
| 182 |
+
# Set up the click handler for this score
|
| 183 |
+
show_btn.click(
|
| 184 |
+
fn=lambda n, details, s=score: get_examples_by_score(s, n, details),
|
| 185 |
+
inputs=[n_examples, show_details_global],
|
| 186 |
+
outputs=score_output
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Event handlers
|
| 190 |
+
load_btn.click(
|
| 191 |
+
fn=load_selected_dataset,
|
| 192 |
+
inputs=dataset_dropdown,
|
| 193 |
+
outputs=status_display
|
| 194 |
)
|
| 195 |
+
|
| 196 |
+
sample_btn.click(
|
| 197 |
+
fn=get_random_unseen_example,
|
| 198 |
+
inputs=show_details_global,
|
| 199 |
+
outputs=random_output
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Load default dataset on startup
|
| 203 |
+
demo.load(
|
| 204 |
+
fn=lambda: load_selected_dataset("Main Dataset"),
|
| 205 |
+
outputs=status_display
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
return demo
|
| 209 |
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
demo = build_interface()
|
| 212 |
+
demo.launch()
|