File size: 1,677 Bytes
ecbefb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
{
"model_type": "movie_recommendation",
"name": "DataSynthis_ML_JobTask",
"description": "Movie recommendation system using collaborative filtering and matrix factorization",
"version": "1.0.0",
"author": "tasdid25",
"license": "MIT",
"framework": "scikit-learn",
"algorithms": [
"collaborative_filtering",
"matrix_factorization_svd"
],
"dataset": "movielens_100k",
"features": {
"user_id_range": [1, 943],
"movie_count": 1682,
"rating_count": 100000,
"recommendation_methods": ["svd", "cf"],
"max_recommendations": 20
},
"input_schema": {
"user_id": {
"type": "integer",
"description": "User ID (1-943)",
"required": true
},
"n_recommendations": {
"type": "integer",
"description": "Number of recommendations (1-20)",
"default": 10,
"required": false
},
"method": {
"type": "string",
"description": "Recommendation method",
"enum": ["svd", "cf"],
"default": "svd",
"required": false
}
},
"output_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"movie_id": {
"type": "integer",
"description": "Movie ID"
},
"title": {
"type": "string",
"description": "Movie title"
},
"predicted_rating": {
"type": "number",
"description": "Predicted rating for the user"
}
}
}
},
"dependencies": [
"pandas>=2.0.0",
"numpy>=1.24.0",
"scikit-learn>=1.3.0"
],
"inference_function": "predict"
} |