{ "model_type": "movie_recommendation", "name": "DataSynthis_ML_JobTask", "description": "Movie recommendation system using collaborative filtering and matrix factorization", "version": "1.0.0", "author": "tasdid25", "license": "MIT", "framework": "scikit-learn", "algorithms": [ "collaborative_filtering", "matrix_factorization_svd" ], "dataset": "movielens_100k", "features": { "user_id_range": [1, 943], "movie_count": 1682, "rating_count": 100000, "recommendation_methods": ["svd", "cf"], "max_recommendations": 20 }, "input_schema": { "user_id": { "type": "integer", "description": "User ID (1-943)", "required": true }, "n_recommendations": { "type": "integer", "description": "Number of recommendations (1-20)", "default": 10, "required": false }, "method": { "type": "string", "description": "Recommendation method", "enum": ["svd", "cf"], "default": "svd", "required": false } }, "output_schema": { "type": "array", "items": { "type": "object", "properties": { "movie_id": { "type": "integer", "description": "Movie ID" }, "title": { "type": "string", "description": "Movie title" }, "predicted_rating": { "type": "number", "description": "Predicted rating for the user" } } } }, "dependencies": [ "pandas>=2.0.0", "numpy>=1.24.0", "scikit-learn>=1.3.0" ], "inference_function": "predict" }