|
|
from transformers import LlamaModel, LlamaConfig, DynamicCache |
|
|
from copy import deepcopy |
|
|
import torch |
|
|
|
|
|
|
|
|
class HunyuanVideoLLMEncoder(LlamaModel): |
|
|
def __init__(self, config: LlamaConfig): |
|
|
super().__init__(config) |
|
|
self.auto_offload = False |
|
|
|
|
|
|
|
|
def enable_auto_offload(self, **kwargs): |
|
|
self.auto_offload = True |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids, |
|
|
attention_mask, |
|
|
hidden_state_skip_layer=2 |
|
|
): |
|
|
embed_tokens = deepcopy(self.embed_tokens).to(input_ids.device) if self.auto_offload else self.embed_tokens |
|
|
inputs_embeds = embed_tokens(input_ids) |
|
|
|
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device) |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, None, False) |
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
rotary_emb = deepcopy(self.rotary_emb).to(input_ids.device) if self.auto_offload else self.rotary_emb |
|
|
position_embeddings = rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
for layer_id, decoder_layer in enumerate(self.layers): |
|
|
if self.auto_offload: |
|
|
decoder_layer = deepcopy(decoder_layer).to(hidden_states.device) |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=False, |
|
|
use_cache=True, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
) |
|
|
hidden_states = layer_outputs[0] |
|
|
if layer_id + hidden_state_skip_layer + 1 >= len(self.layers): |
|
|
break |
|
|
|
|
|
return hidden_states |
|
|
|