Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

# 1. Base Model & Tokenizer
base_model: google/gemma-2-2b-it
model_type: AutoModelForCausalLM # Corrected from 'type_of_model' for axolotl
tokenizer_type: AutoTokenizer
hub_model_id: AiAF/gemma-2-2b-it-co-sft-qlora # New model ID for this finetune
hub_strategy: checkpoint

# 2. LoRA / QLoRA Configuration
load_in_4bit: true
adapter: qlora
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true

# 3. Dataset Configuration
datasets:
  - path: .
    type: chat_template
    # Use the data_files key for local files to avoid ambiguity
    data_files: ./co-sft-dataset.jsonl
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
    # Custom Jinja template for Gemma models
    chat_template: jinja
    chat_template_jinja: |
      {{ bos_token }}
      {% set last = None %}
      {% for m in messages %}
        {% set raw_role = 'model' if m['role']=='assistant' else m['role'] %}
        {% set role = 'user' if raw_role=='system' else raw_role %}
        {% if role == last and role == 'user' %}
          {{ m['content'] | trim }}
        {% else %}
          {{ '<start_of_turn>' + role + '\n' + m['content'] | trim + '<end_of_turn>\n' }}
        {% endif %}
        {% set last = role %}
      {% endfor %}
      {% if add_generation_prompt %}
      {{ '<start_of_turn>model\n' }}
      {% endif %}
    roles_to_train: ["assistant", "user"]

# 4. Training Parameters
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
val_set_size: 0.05
num_epochs: 10
dataset_prepared_path: last_run_prepared

# 5. Saving and Evaluation Strategy
evals_per_epoch: 5
saves_per_epoch: 5
save_total_limit: 100

resume_from_checkpoint: outputs/sft/gemma-2-2b-it-co/checkpoint-15792/

# 6. Output & Logging
output_dir: ./outputs/sft/gemma-2-2b-it-co

wandb_project: "co-sft"
wandb_name: "gemma-2-2b-it_SFT-co_QLoRA"
wandb_log_model: "false"
wandb_run_id: "1"

# 7. Batching & Optimizer
gradient_accumulation_steps: 4
micro_batch_size: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
weight_decay: 0.0

# 8. Hardware & Performance
bf16: true
#fp16: true
tf32: true

flash_attention: true
gradient_checkpointing: true
logging_steps: 1

# 9. Special Tokens
eot_tokens: ["<end_of_turn>"]
special_tokens:
  bos_token: "<bos>"
  eos_token: "<eos>"
  pad_token: "<pad>"

gemma-2-2b-it-co-sft-qlora

This model is a fine-tuned version of google/gemma-2-2b-it on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6665
  • Memory/max Active (gib): 10.22
  • Memory/max Allocated (gib): 10.22
  • Memory/device Reserved (gib): 12.03

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 28170

Training results

Training Loss Epoch Step Validation Loss Reserved (gib) Active (gib) Allocated (gib)
No log 0 0 3.9014 8.66 7.61 7.61
2.2779 0.2002 564 2.2638 11.42 10.18 10.18
2.0814 0.4004 1128 2.0819 11.4 10.18 10.18
1.9261 0.6006 1692 1.9529 11.4 10.18 10.18
1.7837 0.8008 2256 1.8362 11.4 10.18 10.18
1.7039 1.0007 2820 1.7115 11.4 10.18 10.18
1.3581 1.2009 3384 1.6288 11.4 10.18 10.18
1.2775 1.4011 3948 1.5406 11.4 10.18 10.18
1.2031 1.6013 4512 1.4729 11.4 10.18 10.18
1.179 1.8015 5076 1.4379 11.4 10.18 10.18
1.1687 1.9996 5634 1.4310 8.82 7.77 7.77
1.1687 2.0018 5640 1.4628 11.42 10.18 10.18
1.1356 2.2020 6204 1.5042 11.4 10.18 10.18
1.1069 2.4022 6768 1.4440 11.4 10.18 10.18
1.1033 2.6024 7332 1.3911 11.4 10.18 10.18
1.0577 2.8026 7896 1.3202 11.4 10.18 10.18
1.0084 3.0025 8460 1.2964 11.4 10.18 10.18
0.7152 3.2027 9024 1.2804 11.4 10.18 10.18
0.7768 3.4029 9588 1.2555 11.4 10.18 10.18
0.7385 3.6031 10152 1.2414 11.4 10.18 10.18
0.7268 3.8033 10716 1.2337 11.4 10.18 10.18
0.742 3.9992 11268 1.2331 8.82 7.77 7.77
0.742 4.0032 11280 1.2636 11.42 10.18 10.18
0.9975 4.2034 11844 1.4157 11.4 10.18 10.18
1.0904 4.4036 12408 1.4253 11.4 10.18 10.18
1.088 4.6038 12972 1.3913 11.4 10.18 10.18
1.0622 4.8040 13536 1.3515 11.4 10.18 10.18
0.993 5.0043 14100 1.3557 11.4 7.78 7.78
0.8539 5.2045 14664 1.3281 11.4 10.18 10.18
0.8346 5.4046 15228 1.2908 11.4 10.18 10.18
0.8793 5.6048 15792 1.2460 11.4 10.18 10.18
0.8793 5.6048 15792 0.7040 7.79 7.79 8.84
0.7532 5.8062 16356 0.7194 10.22 10.22 12.26
0.7779 6.0064 16920 0.7192 10.22 10.22 12.03
0.6873 6.2066 17484 0.7190 10.22 10.22 12.03
0.6935 6.4068 18048 0.7096 10.22 10.22 12.03
0.6858 6.6070 18612 0.6968 10.22 10.22 12.03
0.6936 6.8072 19176 0.6823 10.22 10.22 12.03
0.6456 7.0075 19740 0.6739 10.22 10.22 12.03
0.5075 7.2077 20304 0.6760 10.22 10.22 12.03
0.5174 7.4079 20868 0.6690 10.22 10.22 12.03
0.5155 7.6081 21432 0.6554 10.22 10.22 12.03
0.4821 7.8083 21996 0.6472 10.22 10.22 12.03
0.477 8.0085 22560 0.6630 10.22 10.22 12.03
0.3981 8.2087 23124 0.6629 10.22 10.22 12.03
0.3917 8.4089 23688 0.6602 10.22 10.22 12.03
0.4008 8.6092 24252 0.6552 10.22 10.22 12.03
0.4003 8.8094 24816 0.6498 10.22 10.22 12.03
0.4102 9.0096 25380 0.6631 10.22 10.22 12.03
0.3526 9.2098 25944 0.6681 10.22 10.22 12.03
0.349 9.4100 26508 0.6664 10.22 10.22 12.03
0.3521 9.6102 27072 0.6669 10.22 10.22 12.03
0.3424 9.8104 27636 0.6665 10.22 10.22 12.03

Framework versions

  • PEFT 0.17.1
  • Transformers 4.56.1
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for AiAF/gemma-2-2b-it-co-sft-qlora

Base model

google/gemma-2-2b
Adapter
(334)
this model

Evaluation results