distil-bumble-bert

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4346
  • Accuracy: 0.7931
  • Precision: 0.6309
  • Recall: 0.6441
  • F1: 0.6374
  • Roc Auc: 0.8438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall Roc Auc
0.4599 0.5204 500 0.7726 0.5497 0.4772 0.6237 0.4914 0.7998
0.4529 1.0416 1000 0.7869 0.5670 0.4523 0.6653 0.4940 0.8199
0.4542 1.5621 1500 0.7893 0.5823 0.4455 0.6614 0.5201 0.8268
0.4428 2.0833 2000 0.7898 0.5943 0.4428 0.6533 0.5451 0.8306
0.4999 2.6037 2500 0.7896 0.6095 0.4451 0.6403 0.5816 0.8318
0.4168 3.1249 3000 0.7941 0.5967 0.4378 0.6677 0.5393 0.8338
0.4143 3.6453 3500 0.7918 0.6114 0.4413 0.6463 0.5800 0.8353
0.4528 4.1665 4000 0.7950 0.6125 0.4333 0.6569 0.5737 0.8395
0.3911 4.6870 4500 0.7941 0.6278 0.4374 0.6413 0.6149 0.8397
0.4225 5.2082 5000 0.7935 0.6270 0.4360 0.6401 0.6144 0.8404
0.3861 5.7286 5500 0.7946 0.6259 0.4338 0.6442 0.6087 0.8412
0.4541 6.2498 6000 0.7965 0.6354 0.4356 0.6430 0.6279 0.8417
0.4086 6.7702 6500 0.7916 0.6332 0.4367 0.6296 0.6368 0.8417
0.4318 7.2914 7000 0.7935 0.6385 0.4372 0.6315 0.6456 0.8421
0.4483 7.8119 7500 0.7957 0.6305 0.4324 0.6445 0.6170 0.8429
0.4059 8.3331 8000 0.7931 0.6306 0.4329 0.6359 0.6253 0.8431
0.4138 8.8535 8500 0.7968 0.6279 0.4296 0.6501 0.6071 0.8439
0.427 9.3747 9000 0.7960 0.6314 0.4309 0.6448 0.6186 0.8439
0.4185 9.8951 9500 0.4346 0.7931 0.6309 0.6441 0.6374 0.8438

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Aubins/distil-bumble-bert

Finetunes
1 model

Spaces using Aubins/distil-bumble-bert 2

Evaluation results