distil-bumble-bert
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4346
- Accuracy: 0.7931
- Precision: 0.6309
- Recall: 0.6441
- F1: 0.6374
- Roc Auc: 0.8438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | Roc Auc |
|---|---|---|---|---|---|---|---|---|
| 0.4599 | 0.5204 | 500 | 0.7726 | 0.5497 | 0.4772 | 0.6237 | 0.4914 | 0.7998 |
| 0.4529 | 1.0416 | 1000 | 0.7869 | 0.5670 | 0.4523 | 0.6653 | 0.4940 | 0.8199 |
| 0.4542 | 1.5621 | 1500 | 0.7893 | 0.5823 | 0.4455 | 0.6614 | 0.5201 | 0.8268 |
| 0.4428 | 2.0833 | 2000 | 0.7898 | 0.5943 | 0.4428 | 0.6533 | 0.5451 | 0.8306 |
| 0.4999 | 2.6037 | 2500 | 0.7896 | 0.6095 | 0.4451 | 0.6403 | 0.5816 | 0.8318 |
| 0.4168 | 3.1249 | 3000 | 0.7941 | 0.5967 | 0.4378 | 0.6677 | 0.5393 | 0.8338 |
| 0.4143 | 3.6453 | 3500 | 0.7918 | 0.6114 | 0.4413 | 0.6463 | 0.5800 | 0.8353 |
| 0.4528 | 4.1665 | 4000 | 0.7950 | 0.6125 | 0.4333 | 0.6569 | 0.5737 | 0.8395 |
| 0.3911 | 4.6870 | 4500 | 0.7941 | 0.6278 | 0.4374 | 0.6413 | 0.6149 | 0.8397 |
| 0.4225 | 5.2082 | 5000 | 0.7935 | 0.6270 | 0.4360 | 0.6401 | 0.6144 | 0.8404 |
| 0.3861 | 5.7286 | 5500 | 0.7946 | 0.6259 | 0.4338 | 0.6442 | 0.6087 | 0.8412 |
| 0.4541 | 6.2498 | 6000 | 0.7965 | 0.6354 | 0.4356 | 0.6430 | 0.6279 | 0.8417 |
| 0.4086 | 6.7702 | 6500 | 0.7916 | 0.6332 | 0.4367 | 0.6296 | 0.6368 | 0.8417 |
| 0.4318 | 7.2914 | 7000 | 0.7935 | 0.6385 | 0.4372 | 0.6315 | 0.6456 | 0.8421 |
| 0.4483 | 7.8119 | 7500 | 0.7957 | 0.6305 | 0.4324 | 0.6445 | 0.6170 | 0.8429 |
| 0.4059 | 8.3331 | 8000 | 0.7931 | 0.6306 | 0.4329 | 0.6359 | 0.6253 | 0.8431 |
| 0.4138 | 8.8535 | 8500 | 0.7968 | 0.6279 | 0.4296 | 0.6501 | 0.6071 | 0.8439 |
| 0.427 | 9.3747 | 9000 | 0.7960 | 0.6314 | 0.4309 | 0.6448 | 0.6186 | 0.8439 |
| 0.4185 | 9.8951 | 9500 | 0.4346 | 0.7931 | 0.6309 | 0.6441 | 0.6374 | 0.8438 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 8