CoMP: Continual Multimodal Pre-training for Vision Foundation Models
Paper
•
2503.18931
•
Published
•
30
This is an VFM that supports native image resolution inputs, continually pre-trained from DINOv2.
Install the github repo, and use the code below to get started with the model.
import torch
from slimm.model.processor import SliMMQwen2VLProcessor
from slimm.model.utils_vl import process_vision_info
from slimm.model.vision_encoder import CoMPDinov2Model
from PIL import Image
model_path = "SliMM-X/CoMP-DINOv2-Large"
model = CoMPDinov2Model.from_pretrained(
model_path, torch_dtype="auto", device_map="cuda", w_merger=False
).to(torch.bfloat16)
processor = SliMMQwen2VLProcessor.from_pretrained(model_path)
image_input = Image.open("https://slimm-x.github.io/comp/figs/teaser.png")
inputs = processor(
images=image_input,
return_tensors="pt",
)
inputs = inputs.to("cuda")
output_feat = model(inputs.pixel_values.to(torch.bfloat16), inputs.image_grid_thw)
print(output_feat)
BibTeX:
@article{comp2025,
title={CoMP: Continual Multimodal Pre-training for Vision Foundation Models},
author={Chen, Yitong and Meng, Lingchen and Peng, Wujian and Wu, Zuxuan and Jiang, Yu-Gang},
year={2025},
journal={arXiv preprint arXiv:2503.18931},
}
Base model
facebook/dinov2-large