DeBERTa Emotion Classifier

This model classifies text into 5 emotions:

  • 😠 Anger
  • 😨 Fear
  • 😊 Joy
  • 😒 Sadness
  • 😲 Surprise

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_name = "Somya26/deberta-emotion-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

text = "I am so happy today!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
probs = torch.sigmoid(outputs.logits).squeeze()

emotions = ['anger', 'fear', 'joy', 'sadness', 'surprise']
for emotion, prob in zip(emotions, probs):
    print(f"{emotion}: {prob:.2%}")

Training

Trained on emotion classification dataset using DeBERTa-v3-base.

Downloads last month
24
Safetensors
Model size
0.2B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Space using Somya26/deberta-emotion-classifier 1