AdvNegGrad / README.md
Yurim0507's picture
Update README.md
add13e1 verified
metadata
license: mit
datasets:
  - uoft-cs/cifar10
language:
  - en
metrics:
  - accuracy
  - confusion_matrix
base_model:
  - jaeunglee/resnet18-cifar10-unlearning
tags:
  - machine_unlearning
  - classification

Evaluation Report

Testing Data

Dataset: CIFAR-10 Test Set
Metrics: Forget class accuracy(loss), Retain class accuracy(loss)


Training Details

Training Procedure

  • Base Model: ResNet18
  • Dataset: CIFAR-10
  • Excluded Class: Varies by model
  • Loss Function: Negative Log-Likelihood Loss
  • Forget loss coefficient (alpha): 0.15
  • Gradient normalization clip: 0.5
  • Optimizer: SGD with:
    • Learning rate: 0.1
    • Momentum: 0.9
    • Weight decay: 5e-4
    • Nesterov: True
  • Training Epochs: 1
  • Batch Size: 2500
  • Hardware: Single GPU (NVIDIA GeForce RTX 3090)

Algorithm

Loss Function for Unlearning

The overall loss function is defined as:

L=αLf+(1α)Lr \mathcal{L} = \alpha \cdot \mathcal{L}_f + (1 - \alpha) \cdot \mathcal{L}_r

Gradient Update:

  • Forget loss gradient ascent (negating gradients):

θθηθLr+ηαθLf \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_r + \eta \alpha \nabla_{\theta} \mathcal{L}_f

  • Gradient clipping:

θLθLmax(1,θLC) \nabla_{\theta} \mathcal{L} \leftarrow \frac{\nabla_{\theta} \mathcal{L}}{\max(1, \frac{\|\nabla_{\theta} \mathcal{L}\|}{C})}

where ( C ) is the clipping threshold.


Model Forget Class Forget class acc(loss) Retain class acc(loss)
cifar10_resnet18_AdvNegGrad_0.pth Airplane 0.0 (28.448) 90.52 (0.631)
cifar10_resnet18_AdvNegGrad_1.pth Automobile 0.0 (31.394) 91.27 (0.516)
cifar10_resnet18_AdvNegGrad_2.pth Bird 0.0 (30.110) 92.72 (0.475)
cifar10_resnet18_AdvNegGrad_3.pth Cat 0.0 (26.171) 92.44 (0.512)
cifar10_resnet18_AdvNegGrad_4.pth Deer 0.0 (27.805) 91.19 (0.561)
cifar10_resnet18_AdvNegGrad_5.pth Dog 0.0 (28.574) 92.81 (0.456)
cifar10_resnet18_AdvNegGrad_6.pth Frog 0.0 (28.360) 92.18 (0.486)
cifar10_resnet18_AdvNegGrad_7.pth Horse 0.0 (32.505) 92.89 (0.401)
cifar10_resnet18_AdvNegGrad_8.pth Ship 0.0 (29.307) 91.34 (0.543)
cifar10_resnet18_AdvNegGrad_9.pth Truck 0.0 (28.959) 92.47 (0.474)