ssc-led-mms-model-mix-adapt-max3-devtrain

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3148
  • Cer: 0.0905
  • Wer: 0.2510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.3221 0.2683 200 0.3254 0.0958 0.2812
0.3633 0.5366 400 0.3317 0.0969 0.2750
0.3513 0.8048 600 0.3423 0.0981 0.2753
0.3447 1.0724 800 0.3362 0.0941 0.2638
0.3403 1.3407 1000 0.3415 0.0985 0.2782
0.3358 1.6090 1200 0.3332 0.0954 0.2685
0.3146 1.8773 1400 0.3357 0.0977 0.2825
0.2648 2.1449 1600 0.3264 0.0938 0.2657
0.2934 2.4131 1800 0.3279 0.0953 0.2756
0.3001 2.6814 2000 0.3242 0.0948 0.2671
0.2749 2.9497 2200 0.3238 0.0928 0.2613
0.2686 3.2173 2400 0.3229 0.0925 0.2604
0.2461 3.4856 2600 0.3239 0.0934 0.2642
0.2485 3.7539 2800 0.3190 0.0923 0.2587
0.2703 4.0215 3000 0.3172 0.0909 0.2542
0.2166 4.2897 3200 0.3192 0.0899 0.2497
0.2312 4.5580 3400 0.3170 0.0902 0.2504
0.2244 4.8263 3600 0.3148 0.0905 0.2510

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
17
Safetensors
Model size
1.0B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results