Improve model card: Add GitHub code link and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
---
|
| 2 |
-
pipeline_tag: text-generation
|
| 3 |
library_name: transformers
|
| 4 |
license: cc-by-nc-4.0
|
|
|
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
| 11 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 12 |
|
| 13 |
### Important Links
|
| 14 |
|
| 15 |
π[Arxiv Paper](https://arxiv.org/abs/2507.22478) |
|
|
|
|
| 16 |
π€[HuggingFace](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
| 17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 18 |
|
|
@@ -59,25 +59,65 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
|
|
| 59 |
|
| 60 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
| 61 |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|
| 62 |
-
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [
|
| 63 |
-
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [
|
| 64 |
-
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [
|
| 65 |
-
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [
|
| 66 |
-
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [
|
| 67 |
-
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [
|
| 68 |
-
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [
|
| 69 |
-
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [
|
| 70 |
-
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [
|
| 71 |
-
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [
|
| 72 |
-
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [
|
| 73 |
|
| 74 |
## Dataset
|
| 75 |
|
| 76 |
| **Dataset** | Modelscope | HuggingFace |
|
| 77 |
|----------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|
| 78 |
-
| SynsQL-Think-916k | [
|
| 79 |
-
| SynsQL-Merge-Think-310k | [
|
| 80 |
-
| bird train and dev dataset | [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
## TODO
|
| 83 |
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: cc-by-nc-4.0
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
tags:
|
| 6 |
- text-to-sql
|
| 7 |
- reinforcement-learning
|
| 8 |
---
|
| 9 |
|
|
|
|
| 10 |
# SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
|
| 11 |
|
| 12 |
### Important Links
|
| 13 |
|
| 14 |
π[Arxiv Paper](https://arxiv.org/abs/2507.22478) |
|
| 15 |
+
\ud83d\udcbb[GitHub Repository](https://github.com/CycloneBoy/slm_sql) |
|
| 16 |
π€[HuggingFace](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
|
| 17 |
π€[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
|
| 18 |
|
|
|
|
| 59 |
|
| 60 |
| **Model** | Base Model | Train Method | Modelscope | HuggingFace |
|
| 61 |
|------------------------------------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|
| 62 |
+
| SLM-SQL-Base-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.5B) |
|
| 63 |
+
| SLM-SQL-0.5B | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.5B) |
|
| 64 |
+
| CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct | Qwen2.5-Coder-0.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-0.5B-Instruct) |
|
| 65 |
+
| SLM-SQL-Base-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.5B) |
|
| 66 |
+
| SLM-SQL-1.5B | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.5B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.5B) |
|
| 67 |
+
| CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct | Qwen2.5-Coder-1.5B-Instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/CscSQL-Merge-Qwen2.5-Coder-1.5B-Instruct) |
|
| 68 |
+
| SLM-SQL-Base-0.6B | Qwen3-0.6B | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-0.6B) |
|
| 69 |
+
| SLM-SQL-0.6B | Qwen3-0.6B | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-0.6B) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-0.6B) |
|
| 70 |
+
| SLM-SQL-Base-1.3B | deepseek-coder-1.3b-instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1.3B ) |
|
| 71 |
+
| SLM-SQL-1.3B | deepseek-coder-1.3b-instruct | SFT + GRPO | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-1.3B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-1.3B ) |
|
| 72 |
+
| SLM-SQL-Base-1B | Llama-3.2-1B-Instruct | SFT | [\ud83e\udd16 Modelscope](https://modelscope.cn/models/cycloneboy/SLM-SQL-Base-1B ) | [\ud83e\udd17 HuggingFace](https://huggingface.co/cycloneboy/SLM-SQL-Base-1B ) |
|
| 73 |
|
| 74 |
## Dataset
|
| 75 |
|
| 76 |
| **Dataset** | Modelscope | HuggingFace |
|
| 77 |
|----------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|
| 78 |
+
| SynsQL-Think-916k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Think-916k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Think-916k) |
|
| 79 |
+
| SynsQL-Merge-Think-310k | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/SynsQL-Merge-Think-310k) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/SynsQL-Merge-Think-310k) |
|
| 80 |
+
| bird train and dev dataset | [\ud83e\udd16 Modelscope](https://modelscope.cn/datasets/cycloneboy/bird_train) | [\ud83e\udd17 HuggingFace](https://huggingface.co/datasets/cycloneboy/bird_train) |
|
| 81 |
+
|
| 82 |
+
## Sample Usage
|
| 83 |
+
|
| 84 |
+
You can easily load the model and tokenizer using the Hugging Face `transformers` library to perform text-to-SQL generation.
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 88 |
+
import torch
|
| 89 |
+
|
| 90 |
+
# Replace with the specific model you want to use, e.g., "cycloneboy/SLM-SQL-0.5B"
|
| 91 |
+
model_id = "cycloneboy/SLM-SQL-0.5B"
|
| 92 |
+
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 94 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 95 |
+
model_id,
|
| 96 |
+
torch_dtype=torch.bfloat16, # Adjust as needed (e.g., torch.float16 or remove for auto)
|
| 97 |
+
device_map="auto"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Example natural language query for SQL generation
|
| 101 |
+
query = "Find the names of all employees who work in the 'Sales' department."
|
| 102 |
+
|
| 103 |
+
# Prepare the prompt using the model's chat template
|
| 104 |
+
chat_messages = [{"role": "user", "content": query}]
|
| 105 |
+
prompt = tokenizer.apply_chat_template(chat_messages, tokenize=False, add_generation_prompt=True)
|
| 106 |
+
|
| 107 |
+
# Generate the SQL query
|
| 108 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
|
| 109 |
+
generated_ids = model.generate(
|
| 110 |
+
model_inputs.input_ids,
|
| 111 |
+
max_new_tokens=256,
|
| 112 |
+
do_sample=True,
|
| 113 |
+
temperature=0.7,
|
| 114 |
+
top_p=0.9
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Decode and print the generated SQL
|
| 118 |
+
generated_text = tokenizer.batch_decode(generated_ids[:, model_inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
|
| 119 |
+
print(generated_text)
|
| 120 |
+
```
|
| 121 |
|
| 122 |
## TODO
|
| 123 |
|