Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'deu_Latn' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Missing a comma or '}' after an object member. in row 5
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                       ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                         ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
                  obj = self._get_object_parser(self.data)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
                  self._parse()
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1392, in _parse
                  ujson_loads(json, precise_float=self.precise_float), dtype=None
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              ValueError: Trailing data
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Missing a comma or '}' after an object member. in row 5

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

HPLT3-Edu-scores

Dataset summary

HPLT3-JQL-Education is a model-annotated language subset of HPLT3, spanning 36 languages. Our model-annotations allow for a filtering that achieves higher-quality training outcomes without excessively aggressive data reduction. HPLT3-Edu-scores was created based on scores assigned by a deep learning classifier trained to identify educational samples using Snowflake's Arctic-embed-m-v2.0 embeddings.

For all training ablations, we used dense decoder-only models with 2 billion parameters, following the LLaMA architecture. For more details, see our paper https://arxiv.org/abs/2505.22232.

The approach as described in the paper is easy to extend to other languages as well, and we might consider adding new languages to an upcoming version of the present dataset.

We also separately release the computed general-purpose embedding vectors for the the full sets of the original HPLT3 dataset, in the respective languages, as they can be useful for other applications beyond quality filtering.

Dataset Structure

Data Fields

Each data entry includes:

  • score_Gemma_Snowflake: Quality score obtained by the Gemma-based Snowflake classifier
  • score_Llama_Snowflake: Quality score obtained by the Llama-based Snowflake classifier
  • score_Mistral_Snowflake: Quality score obtained by the Mistral-based Snowflake classifier
  • document_ids: Original HPLT3 id from the document.

Data Instance

{
  "document_ids": "a4f748036fe464fc123991d1d213f210",
  "score_Gemma_Snowflake": 1.2109375,
  "score_Llama_Snowflake": 0.0849609375,
  "score_Mistral_Snowflake": 0.36328125
}

Origin of the Dataset

This dataset, derived from HPLT3, includes web content collected from 2012 to 2024. As HPLT3 is sourced from the broader internet, it may contain some personally identifiable information (PII), despite efforts to anonymize email addresses and public IP addresses during processing.

Considerations for Data Usage

For information on social impact, potential biases, and known limitations, please refer to the HPLT3 documentation.

Citation information

If you use this dataset in your research or applications, please use the following citation:

@article{ali2025judging,
    title     = {Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models},
    author    = {
      Mehdi Ali,
      Manuel Brack,
      Max Lübbering,
      Elias Wendt,
      Abbas Goher Khan,
      Richard Rutmann,
      Alex Jude,
      Maurice Kraus,
      Alexander Arno Weber,
      Felix Stollenwerk,
      David Kaczér,
      Florian Mai,
      Lucie Flek,
      Rafet Sifa,
      Nicolas Flores-Herr,
      Joachim Köhler,
      Patrick Schramowski,
      Michael Fromm,
      Kristian Kersting
    },
    year      = {2025},
    journal   = {arXiv preprint arXiv:2505:22232}
  }
Downloads last month
7