url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
48
51
id
int64
600M
3.43B
node_id
stringlengths
18
24
number
int64
2
7.78k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
listlengths
0
30
created_at
stringdate
2020-04-14 18:18:51
2025-09-18 08:25:34
updated_at
stringdate
2020-04-29 09:23:05
2025-09-22 08:47:53
closed_at
stringlengths
20
20
author_association
stringclasses
4 values
type
null
active_lock_reason
null
draft
bool
0 classes
pull_request
dict
body
stringlengths
0
228k
closed_by
dict
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
4 values
sub_issues_summary
dict
issue_dependencies_summary
dict
is_pull_request
bool
1 class
https://api.github.com/repos/huggingface/datasets/issues/7472
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7472/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7472/comments
https://api.github.com/repos/huggingface/datasets/issues/7472/events
https://github.com/huggingface/datasets/issues/7472
2,937,607,272
I_kwDODunzps6vGFRo
7,472
Label casting during `map` process is canceled after the `map` process
{ "avatar_url": "https://avatars.githubusercontent.com/u/11156001?v=4", "events_url": "https://api.github.com/users/yoshitomo-matsubara/events{/privacy}", "followers_url": "https://api.github.com/users/yoshitomo-matsubara/followers", "following_url": "https://api.github.com/users/yoshitomo-matsubara/following{/other_user}", "gists_url": "https://api.github.com/users/yoshitomo-matsubara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yoshitomo-matsubara", "id": 11156001, "login": "yoshitomo-matsubara", "node_id": "MDQ6VXNlcjExMTU2MDAx", "organizations_url": "https://api.github.com/users/yoshitomo-matsubara/orgs", "received_events_url": "https://api.github.com/users/yoshitomo-matsubara/received_events", "repos_url": "https://api.github.com/users/yoshitomo-matsubara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yoshitomo-matsubara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yoshitomo-matsubara/subscriptions", "type": "User", "url": "https://api.github.com/users/yoshitomo-matsubara", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! By default `map()` tries to keep the types of each column of the dataset, so here it reuses the int type since all your float values can be converted to integers. But I agree it would be nice to store float values as float values and don't try to reuse the same type in this case.\n\nIn the meantime, you can either store the float values in a new column, or pass the output `features=` manually to `map()`", "Hi @lhoestq \n\nThank you for the answer & suggestion!\n\nCan we add some flag to `map()` function like `reuses_original_type=True` and skip reusing the original type when it's False?\n\nLet me know if it sounds like a reasonable solution. I am happy to submit a PR for this.", "In general we try to avoid adding new parameters when it's already possible to achieve the same results with existing parameters (here `features=`). But since it's not always convenient to know in advance the `features=` I'm open to contributions to adding this parameter yes", "Thank you for sharing the context. Good to know that. \n\nI submitted a PR #7483. Could you review the PR?", "Hi @lhoestq \n\nLet me know if there is something that I should add to [the PR](https://github.com/huggingface/datasets/pull/7483)!", "Closing this issue as the PR #7483 was merged" ]
2025-03-21T07:56:22Z
2025-04-10T05:11:15Z
2025-04-10T05:11:14Z
CONTRIBUTOR
null
null
null
null
### Describe the bug When preprocessing a multi-label dataset, I introduced a step to convert int labels to float labels as [BCEWithLogitsLoss](https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html) expects float labels and forward function of models in transformers package internally use `BCEWithLogitsLoss` However, the casting was canceled after `.map` process and the label values still use int values, which leads to an error ``` File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/transformers/models/bert/modeling_bert.py", line 1711, in forward loss = loss_fct(logits, labels) File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/modules/loss.py", line 819, in forward return F.binary_cross_entropy_with_logits( File "/home/yoshitomo/anaconda3/envs/torchdistill/lib/python3.10/site-packages/torch/nn/functional.py", line 3628, in binary_cross_entropy_with_logits return torch.binary_cross_entropy_with_logits( RuntimeError: result type Float can't be cast to the desired output type Long ``` This seems like happening only when the original labels are int values (see examples below) ### Steps to reproduce the bug If the original dataset uses a list of int labels, it will cancel the int->float casting ```python from datasets import Dataset data = { 'text': ['text1', 'text2', 'text3', 'text4'], 'labels': [[0, 1, 2], [3], [3, 4], [3]] } dataset = Dataset.from_dict(data) label_set = set([label for labels in data['labels'] for label in labels]) label2idx = {label: idx for idx, label in enumerate(sorted(label_set))} def multi_labels_to_ids(labels): ids = [0.0] * len(label2idx) for label in labels: ids[label2idx[label]] = 1.0 return ids def preprocess(examples): result = {'sentence': [[0, 3, 4] for _ in range(len(examples['labels']))]} print('"labels" are int', examples['labels']) result['labels'] = [multi_labels_to_ids(l) for l in examples['labels']] print('"labels" were converted to multi-label format with float values', result['labels']) return result preprocessed_dataset = dataset.map(preprocess, batched=True, remove_columns=['labels', 'text']) print(preprocessed_dataset[0]['labels']) # Output: "[1, 1, 1, 0, 0]" # Expected: "[1.0, 1.0, 1.0, 0.0, 0.0]" ``` If the original dataset uses non-int labels, it works as expected. ```python from datasets import Dataset data = { 'text': ['text1', 'text2', 'text3', 'text4'], 'labels': [['label1', 'label2', 'label3'], ['label4'], ['label4', 'label5'], ['label4']] } dataset = Dataset.from_dict(data) label_set = set([label for labels in data['labels'] for label in labels]) label2idx = {label: idx for idx, label in enumerate(sorted(label_set))} def multi_labels_to_ids(labels): ids = [0.0] * len(label2idx) for label in labels: ids[label2idx[label]] = 1.0 return ids def preprocess(examples): result = {'sentence': [[0, 3, 4] for _ in range(len(examples['labels']))]} print('"labels" are int', examples['labels']) result['labels'] = [multi_labels_to_ids(l) for l in examples['labels']] print('"labels" were converted to multi-label format with float values', result['labels']) return result preprocessed_dataset = dataset.map(preprocess, batched=True, remove_columns=['labels', 'text']) print(preprocessed_dataset[0]['labels']) # Output: "[1.0, 1.0, 1.0, 0.0, 0.0]" # Expected: "[1.0, 1.0, 1.0, 0.0, 0.0]" ``` Note that the only difference between these two examples is > 'labels': [[0, 1, 2], [3], [3, 4], [3]] v.s > 'labels': [['label1', 'label2', 'label3'], ['label4'], ['label4', 'label5'], ['label4']] ### Expected behavior Even if the original dataset uses a list of int labels, the int->float casting during `.map` process should not be canceled as shown in the above example ### Environment info OS Ubuntu 22.04 LTS Python 3.10.11 datasets v3.4.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/11156001?v=4", "events_url": "https://api.github.com/users/yoshitomo-matsubara/events{/privacy}", "followers_url": "https://api.github.com/users/yoshitomo-matsubara/followers", "following_url": "https://api.github.com/users/yoshitomo-matsubara/following{/other_user}", "gists_url": "https://api.github.com/users/yoshitomo-matsubara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yoshitomo-matsubara", "id": 11156001, "login": "yoshitomo-matsubara", "node_id": "MDQ6VXNlcjExMTU2MDAx", "organizations_url": "https://api.github.com/users/yoshitomo-matsubara/orgs", "received_events_url": "https://api.github.com/users/yoshitomo-matsubara/received_events", "repos_url": "https://api.github.com/users/yoshitomo-matsubara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yoshitomo-matsubara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yoshitomo-matsubara/subscriptions", "type": "User", "url": "https://api.github.com/users/yoshitomo-matsubara", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7472/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7472/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7471/comments
https://api.github.com/repos/huggingface/datasets/issues/7471/events
https://github.com/huggingface/datasets/issues/7471
2,937,530,069
I_kwDODunzps6vFybV
7,471
Adding argument to `_get_data_files_patterns`
{ "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SangbumChoi", "id": 34004152, "login": "SangbumChoi", "node_id": "MDQ6VXNlcjM0MDA0MTUy", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "type": "User", "url": "https://api.github.com/users/SangbumChoi", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi ! The pattern can be specified in advance in YAML in the README.md of the dataset :)\n\nFor example\n\n```\n---\nconfigs:\n- config_name: default\n data_files:\n - split: train\n path: \"train/*\"\n - split: test\n path: \"test/*\"\n---\n```\n\nSee the docs at https://huggingface.co/docs/hub/en/datasets-manual-configuration", "@lhoestq How can we choose in this case ? https://huggingface.co/datasets/datasets-examples/doc-image-5\n", "choose what ? sorry I didn't get it ^^'" ]
2025-03-21T07:17:53Z
2025-03-27T12:30:52Z
2025-03-26T07:26:27Z
NONE
null
null
null
null
### Feature request How about adding if the user already know about the pattern? https://github.com/huggingface/datasets/blob/a256b85cbc67aa3f0e75d32d6586afc507cf535b/src/datasets/data_files.py#L252 ### Motivation While using this load_dataset people might use 10M of images for the local files. However, due to searching all the appropriate file pattern in fsspec, purely searching this pattern takes more than 10 hours (real use-case). ### Your contribution Yeah I can make this happen if this seems valid. @lhoestq WDYT? such like ``` def _get_data_files_patterns(pattern_resolver: Callable[[str], list[str]], patterns: PATTERNS) -> dict[str, list[str]]: ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/34004152?v=4", "events_url": "https://api.github.com/users/SangbumChoi/events{/privacy}", "followers_url": "https://api.github.com/users/SangbumChoi/followers", "following_url": "https://api.github.com/users/SangbumChoi/following{/other_user}", "gists_url": "https://api.github.com/users/SangbumChoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SangbumChoi", "id": 34004152, "login": "SangbumChoi", "node_id": "MDQ6VXNlcjM0MDA0MTUy", "organizations_url": "https://api.github.com/users/SangbumChoi/orgs", "received_events_url": "https://api.github.com/users/SangbumChoi/received_events", "repos_url": "https://api.github.com/users/SangbumChoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SangbumChoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SangbumChoi/subscriptions", "type": "User", "url": "https://api.github.com/users/SangbumChoi", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7471/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7471/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7470
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7470/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7470/comments
https://api.github.com/repos/huggingface/datasets/issues/7470/events
https://github.com/huggingface/datasets/issues/7470
2,937,236,323
I_kwDODunzps6vEqtj
7,470
Is it possible to shard a single-sharded IterableDataset?
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Maybe you can look for an option in your dataset to partition your data based on a deterministic filter ? For example each worker could stream the data based on `row.id % num_shards` or something like that ?", "So the recommendation is to start out with multiple shards initially and re-sharding after is not expected to work? :(\n\nWould something like the following work? Some DiskCachingIterableDataset, where worker 0 streams from the datasource, but also writes to disk, and all of the other workers read from what worker 0 wrote? Then that would produce a stream with a deterministic order and we can subsample.", "To be honest it would be cool to support native multiprocessing in `IterableDataset.map` so you can parallelize any specific processing step without having to rely on a torch Dataloader. What do you think ?\n\nrelated: https://github.com/huggingface/datasets/issues/7193 https://github.com/huggingface/datasets/issues/3444 \noriginal issue: https://github.com/huggingface/datasets/issues/2642\n\nAlternatively the DiskCachingIterableDataset idea works, just note that to make it work with a torch Dataloader with num_workers>0 you'll need:\n1. to make your own `torch.utils.data.IterableDataset` and have rank=0 stream the data and share them with the other workers (either via disk as suggested or IPC)\n2. take into account that`datasets.IterableDataset` will yield 0 examples for ranks with id>0 if there is only one shard, but in your case it's ok since you'd only stream from rank=0", "Ohh that would be pretty cool!\n\nThanks for the suggestions, as there's no actionable items for this repo I'm going to close this issue now.", "Another usecase for this resharding:\n\nIf we have a bunch of jsonl files, and we load it as an IterableDataset with multiple dataloader workers, each file gets naively assigned to a worker.\n\nIf the files were not carefully produced to be equally sized, eg if the very last file is significantly shorter, containing just a few examples, and it gets assigned onto a dataloader worker by itself, then the examples in that file will be significantly oversampled.\n\nIt would be nice if datasets had an internal way to rebalance this without requiring offline reprocessing of the data files" ]
2025-03-21T04:33:37Z
2025-05-09T22:51:46Z
2025-03-26T06:49:28Z
NONE
null
null
null
null
I thought https://github.com/huggingface/datasets/pull/7252 might be applicable but looking at it maybe not. Say we have a process, eg. a database query, that can return data in slightly different order each time. So, the initial query needs to be run by a single thread (not to mention running multiple times incurs more cost too). But the results are also big enough that we don't want to materialize it entirely and instead stream it with an IterableDataset. But after we have the results we want to split it up across workers to parallelize processing. Is something like this possible to do? Here's a failed attempt. The end result should be that each of the shards has unique data, but unfortunately with this attempt the generator gets run once in each shard and the results end up with duplicates... ``` import random import datasets def gen(): print('RUNNING GENERATOR!') items = list(range(10)) random.shuffle(items) yield from items ds = datasets.IterableDataset.from_generator(gen) print('dataset contents:') for item in ds: print(item) print() print('dataset contents (2):') for item in ds: print(item) print() num_shards = 3 def sharded(shard_id): for i, example in enumerate(ds): if i % num_shards in shard_id: yield example ds1 = datasets.IterableDataset.from_generator( sharded, gen_kwargs={'shard_id': list(range(num_shards))} ) for shard in range(num_shards): print('shard', shard) for item in ds1.shard(num_shards, shard): print(item) ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7470/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7470/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7469
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7469/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7469/comments
https://api.github.com/repos/huggingface/datasets/issues/7469/events
https://github.com/huggingface/datasets/issues/7469
2,936,606,080
I_kwDODunzps6vCQ2A
7,469
Custom split name with the web interface
{ "avatar_url": "https://avatars.githubusercontent.com/u/15141326?v=4", "events_url": "https://api.github.com/users/vince62s/events{/privacy}", "followers_url": "https://api.github.com/users/vince62s/followers", "following_url": "https://api.github.com/users/vince62s/following{/other_user}", "gists_url": "https://api.github.com/users/vince62s/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vince62s", "id": 15141326, "login": "vince62s", "node_id": "MDQ6VXNlcjE1MTQxMzI2", "organizations_url": "https://api.github.com/users/vince62s/orgs", "received_events_url": "https://api.github.com/users/vince62s/received_events", "repos_url": "https://api.github.com/users/vince62s/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vince62s/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vince62s/subscriptions", "type": "User", "url": "https://api.github.com/users/vince62s", "user_view_type": "public" }
[]
closed
false
null
[]
null
[]
2025-03-20T20:45:59Z
2025-03-21T07:20:37Z
2025-03-21T07:20:37Z
NONE
null
null
null
null
### Describe the bug According the doc here: https://huggingface.co/docs/hub/datasets-file-names-and-splits#custom-split-name it should infer the split name from the subdir of data or the beg of the name of the files in data. When doing this manually through web upload it does not work. it uses "train" as a unique split. example: https://huggingface.co/datasets/eole-nlp/estimator_chatml ### Steps to reproduce the bug follow the link above ### Expected behavior there should be two splits "mlqe" and "1720_da" ### Environment info website
{ "avatar_url": "https://avatars.githubusercontent.com/u/15141326?v=4", "events_url": "https://api.github.com/users/vince62s/events{/privacy}", "followers_url": "https://api.github.com/users/vince62s/followers", "following_url": "https://api.github.com/users/vince62s/following{/other_user}", "gists_url": "https://api.github.com/users/vince62s/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vince62s", "id": 15141326, "login": "vince62s", "node_id": "MDQ6VXNlcjE1MTQxMzI2", "organizations_url": "https://api.github.com/users/vince62s/orgs", "received_events_url": "https://api.github.com/users/vince62s/received_events", "repos_url": "https://api.github.com/users/vince62s/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vince62s/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vince62s/subscriptions", "type": "User", "url": "https://api.github.com/users/vince62s", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7469/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7469/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7468
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7468/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7468/comments
https://api.github.com/repos/huggingface/datasets/issues/7468/events
https://github.com/huggingface/datasets/issues/7468
2,934,094,103
I_kwDODunzps6u4rkX
7,468
function `load_dataset` can't solve folder path with regex characters like "[]"
{ "avatar_url": "https://avatars.githubusercontent.com/u/89294013?v=4", "events_url": "https://api.github.com/users/Hpeox/events{/privacy}", "followers_url": "https://api.github.com/users/Hpeox/followers", "following_url": "https://api.github.com/users/Hpeox/following{/other_user}", "gists_url": "https://api.github.com/users/Hpeox/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Hpeox", "id": 89294013, "login": "Hpeox", "node_id": "MDQ6VXNlcjg5Mjk0MDEz", "organizations_url": "https://api.github.com/users/Hpeox/orgs", "received_events_url": "https://api.github.com/users/Hpeox/received_events", "repos_url": "https://api.github.com/users/Hpeox/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Hpeox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hpeox/subscriptions", "type": "User", "url": "https://api.github.com/users/Hpeox", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! Have you tried escaping the glob special characters `[` and `]` ?\n\nbtw note that`AbstractFileSystem.glob` doesn't support regex, instead it supports glob patterns as in the python library [glob](https://docs.python.org/3/library/glob.html)\n" ]
2025-03-20T05:21:59Z
2025-03-25T10:18:12Z
null
NONE
null
null
null
null
### Describe the bug When using the `load_dataset` function with a folder path containing regex special characters (such as "[]"), the issue occurs due to how the path is handled in the `resolve_pattern` function. This function passes the unprocessed path directly to `AbstractFileSystem.glob`, which supports regular expressions. As a result, the globbing mechanism interprets these characters as regex patterns, leading to a traversal of the entire disk partition instead of confining the search to the intended directory. ### Steps to reproduce the bug just create a folder like `E:\[D_DATA]\koch_test`, then `load_dataset("parquet", data_dir="E:\[D_DATA]\\test", split="train")` it will keep searching the whole disk. I add two `print` in `glob` and `resolve_pattern` to see the path ### Expected behavior it should load the dataset as in normal folders ### Environment info - `datasets` version: 3.3.2 - Platform: Windows-10-10.0.22631-SP0 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7468/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7468/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7467
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7467/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7467/comments
https://api.github.com/repos/huggingface/datasets/issues/7467/events
https://github.com/huggingface/datasets/issues/7467
2,930,067,107
I_kwDODunzps6upUaj
7,467
load_dataset with streaming hangs on parquet datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/10550252?v=4", "events_url": "https://api.github.com/users/The0nix/events{/privacy}", "followers_url": "https://api.github.com/users/The0nix/followers", "following_url": "https://api.github.com/users/The0nix/following{/other_user}", "gists_url": "https://api.github.com/users/The0nix/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/The0nix", "id": 10550252, "login": "The0nix", "node_id": "MDQ6VXNlcjEwNTUwMjUy", "organizations_url": "https://api.github.com/users/The0nix/orgs", "received_events_url": "https://api.github.com/users/The0nix/received_events", "repos_url": "https://api.github.com/users/The0nix/repos", "site_admin": false, "starred_url": "https://api.github.com/users/The0nix/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/The0nix/subscriptions", "type": "User", "url": "https://api.github.com/users/The0nix", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! The issue comes from `pyarrow`, I reported it here: https://github.com/apache/arrow/issues/45214 (feel free to comment / thumb up).\n\nAlternatively we can try to find something else than `ParquetFileFragment.to_batches()` to iterate on Parquet data and keep the option the pass `filters=`..." ]
2025-03-18T23:33:54Z
2025-03-25T10:28:04Z
null
NONE
null
null
null
null
### Describe the bug When I try to load a dataset with parquet files (e.g. "bigcode/the-stack") the dataset loads, but python interpreter can't exit and hangs ### Steps to reproduce the bug ```python3 import datasets print('Start') dataset = datasets.load_dataset("bigcode/the-stack", data_dir="data/yaml", streaming=True, split="train") it = iter(dataset) next(it) print('Finish') ``` The program prints finish but doesn't exit and hangs indefinitely. I tried this on two different machines and several datasets. ### Expected behavior The program exits successfully ### Environment info datasets==3.4.1 Python 3.12.9. MacOS and Ubuntu Linux
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7467/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7467/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7461
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7461/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7461/comments
https://api.github.com/repos/huggingface/datasets/issues/7461/events
https://github.com/huggingface/datasets/issues/7461
2,925,608,123
I_kwDODunzps6uYTy7
7,461
List of images behave differently on IterableDataset and Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1288009?v=4", "events_url": "https://api.github.com/users/FredrikNoren/events{/privacy}", "followers_url": "https://api.github.com/users/FredrikNoren/followers", "following_url": "https://api.github.com/users/FredrikNoren/following{/other_user}", "gists_url": "https://api.github.com/users/FredrikNoren/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FredrikNoren", "id": 1288009, "login": "FredrikNoren", "node_id": "MDQ6VXNlcjEyODgwMDk=", "organizations_url": "https://api.github.com/users/FredrikNoren/orgs", "received_events_url": "https://api.github.com/users/FredrikNoren/received_events", "repos_url": "https://api.github.com/users/FredrikNoren/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FredrikNoren/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FredrikNoren/subscriptions", "type": "User", "url": "https://api.github.com/users/FredrikNoren", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Can you try with `datasets` ^3.4 released recently ? on my side it works with IterableDataset on the recent version :)\n\n```python\nIn [20]: def train_iterable_gen():\n ...: images = np.array(load_image(\"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg\").resize((128, 128)))\n ...: yield {\n ...: \"images\": np.expand_dims(images, axis=0),\n ...: \"messages\": [\n ...: {\n ...: \"role\": \"user\",\n ...: \"content\": [{\"type\": \"image\", \"url\": \"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg\" }]\n ...: },\n ...: {\n ...: \"role\": \"assistant\",\n ...: \"content\": [{\"type\": \"text\", \"text\": \"duck\" }]\n ...: }\n ...: ]\n ...: }\n ...: \n ...: train_ds = IterableDataset.from_generator(train_iterable_gen,\n ...: features=Features({\n ...: 'images': [datasets.Image(mode=None, decode=True, id=None)],\n ...: 'messages': [{'content': [{'text': datasets.Value(dtype='string', id=None), 'type': datasets.Value(dtype='string', id=None) }],\n ...: 'role': datasets.Value(dtype='string', id=None)}]\n ...: } )\n ...: )\n\n\nIn [21]: \n\nIn [21]: next(iter(train_ds))\n/Users/quentinlhoest/hf/datasets/src/datasets/features/image.py:338: UserWarning: Downcasting array dtype int64 to uint8 to be compatible with 'Pillow'\n warnings.warn(f\"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'\")\nOut[21]: \n{'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=128x128>],\n 'messages': [{'content': [{'text': None, 'type': 'image'}], 'role': 'user'},\n {'content': [{'type': 'text', 'text': 'duck'}], 'role': 'assistant'}]}\n```", "Hm I tried it here and it works as expected, even on datasets 3.3.2. I guess maybe something in the SFTTrainer is doing additional processing on the dataset, I'll have a look there.\n\nThanks @lhoestq!" ]
2025-03-17T15:59:23Z
2025-03-18T08:57:17Z
2025-03-18T08:57:16Z
NONE
null
null
null
null
### Describe the bug This code: ```python def train_iterable_gen(): images = np.array(load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg").resize((128, 128))) yield { "images": np.expand_dims(images, axis=0), "messages": [ { "role": "user", "content": [{"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" }] }, { "role": "assistant", "content": [{"type": "text", "text": "duck" }] } ] } train_ds = Dataset.from_generator(train_iterable_gen, features=Features({ 'images': [datasets.Image(mode=None, decode=True, id=None)], 'messages': [{'content': [{'text': datasets.Value(dtype='string', id=None), 'type': datasets.Value(dtype='string', id=None) }], 'role': datasets.Value(dtype='string', id=None)}] } ) ) ``` works as I'd expect; if I iterate the dataset then the `images` column returns a `List[PIL.Image.Image]`, i.e. `'images': [<PIL.PngImagePlugin.PngImageFile image mode=RGB size=128x128 at 0x77EFB7EF4680>]`. But if I change `Dataset` to `IterableDataset`, the `images` column changes into `'images': [{'path': None, 'bytes': ..]` ### Steps to reproduce the bug The code above + ```python def load_image(url): response = requests.get(url) image = Image.open(io.BytesIO(response.content)) return image ``` I'm feeding it to SFTTrainer ### Expected behavior Dataset and IterableDataset would behave the same ### Environment info ```yaml requires-python = ">=3.12" dependencies = [ "av>=14.1.0", "boto3>=1.36.7", "datasets>=3.3.2", "docker>=7.1.0", "google-cloud-storage>=2.19.0", "grpcio>=1.70.0", "grpcio-tools>=1.70.0", "moviepy>=2.1.2", "open-clip-torch>=2.31.0", "opencv-python>=4.11.0.86; sys_platform == 'darwin'", "opencv-python-headless>=4.11.0.86; sys_platform == 'linux'", "pandas>=2.2.3", "pillow>=10.4.0", "plotly>=6.0.0", "py-spy>=0.4.0", "pydantic>=2.10.6", "pydantic-settings>=2.7.1", "pymysql>=1.1.1", "ray[data,default,serve,train,tune]>=2.43.0", "torch>=2.6.0", "torchmetrics>=1.6.1", "torchvision>=0.21.0", "transformers[torch]@git+https://github.com/huggingface/transformers", "wandb>=0.19.4", # https://github.com/Dao-AILab/flash-attention/issues/833 "flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl; sys_platform == 'linux'", "trl@https://github.com/huggingface/trl.git", "peft>=0.14.0", ] ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/1288009?v=4", "events_url": "https://api.github.com/users/FredrikNoren/events{/privacy}", "followers_url": "https://api.github.com/users/FredrikNoren/followers", "following_url": "https://api.github.com/users/FredrikNoren/following{/other_user}", "gists_url": "https://api.github.com/users/FredrikNoren/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FredrikNoren", "id": 1288009, "login": "FredrikNoren", "node_id": "MDQ6VXNlcjEyODgwMDk=", "organizations_url": "https://api.github.com/users/FredrikNoren/orgs", "received_events_url": "https://api.github.com/users/FredrikNoren/received_events", "repos_url": "https://api.github.com/users/FredrikNoren/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FredrikNoren/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FredrikNoren/subscriptions", "type": "User", "url": "https://api.github.com/users/FredrikNoren", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7461/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7461/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7458
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7458/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7458/comments
https://api.github.com/repos/huggingface/datasets/issues/7458/events
https://github.com/huggingface/datasets/issues/7458
2,925,403,528
I_kwDODunzps6uXh2I
7,458
Loading the `laion/filtered-wit` dataset in streaming mode fails on v3.4.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/23343961?v=4", "events_url": "https://api.github.com/users/nikita-savelyevv/events{/privacy}", "followers_url": "https://api.github.com/users/nikita-savelyevv/followers", "following_url": "https://api.github.com/users/nikita-savelyevv/following{/other_user}", "gists_url": "https://api.github.com/users/nikita-savelyevv/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikita-savelyevv", "id": 23343961, "login": "nikita-savelyevv", "node_id": "MDQ6VXNlcjIzMzQzOTYx", "organizations_url": "https://api.github.com/users/nikita-savelyevv/orgs", "received_events_url": "https://api.github.com/users/nikita-savelyevv/received_events", "repos_url": "https://api.github.com/users/nikita-savelyevv/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikita-savelyevv/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikita-savelyevv/subscriptions", "type": "User", "url": "https://api.github.com/users/nikita-savelyevv", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "thanks for reporting, I released 3.4.1 with a fix" ]
2025-03-17T14:54:02Z
2025-03-17T16:02:04Z
2025-03-17T15:25:55Z
NONE
null
null
null
null
### Describe the bug Loading https://huggingface.co/datasets/laion/filtered-wit in streaming mode fails after update to `datasets==3.4.0`. The dataset loads fine on v3.3.2. ### Steps to reproduce the bug Steps to reproduce: ``` pip install datastes==3.4.0 python -c "from datasets import load_dataset; load_dataset('laion/filtered-wit', split='train', streaming=True)" ``` Results in: ``` $ python -c "from datasets import load_dataset; load_dataset('laion/filtered-wit', split='train', streaming=True)" Repo card metadata block was not found. Setting CardData to empty. Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████| 560/560 [00:00<00:00, 2280.24it/s] Traceback (most recent call last): File "<string>", line 1, in <module> File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/load.py", line 2080, in load_dataset return builder_instance.as_streaming_dataset(split=split) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/builder.py", line 1265, in as_streaming_dataset splits_generators = {sg.name: sg for sg in self._split_generators(dl_manager)} File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 49, in _split_generators data_files = dl_manager.download_and_extract(self.config.data_files) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 169, in download_and_extract return self.extract(self.download(url_or_urls)) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 121, in extract urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 496, in map_nested mapped = [ File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 497, in <listcomp> map_nested( File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 513, in map_nested mapped = [ File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 514, in <listcomp> _single_map_nested((function, obj, batched, batch_size, types, None, True, None)) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 375, in _single_map_nested return function(data_struct) File "/home/nsavel/venvs/tmp/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 131, in _extract raise NotImplementedError( NotImplementedError: Extraction protocol for TAR archives like 'hf://datasets/laion/filtered-wit@c38ca7464e9934d9a49f88b3f60f5ad63b245465/data/00000.tar' is not implemented in streaming mode. Please use `dl_manager.iter_archive` instead. Example usage: url = dl_manager.download(url) tar_archive_iterator = dl_manager.iter_archive(url) for filename, file in tar_archive_iterator: ... ``` ### Expected behavior Dataset loads successfully. ### Environment info Ubuntu 20.04.6. Python 3.9. Datasets 3.4.0. pip freeze: ``` aiohappyeyeballs==2.6.1 aiohttp==3.11.14 aiosignal==1.3.2 async-timeout==5.0.1 attrs==25.3.0 certifi==2025.1.31 charset-normalizer==3.4.1 datasets==3.4.0 dill==0.3.8 filelock==3.18.0 frozenlist==1.5.0 fsspec==2024.12.0 huggingface-hub==0.29.3 idna==3.10 multidict==6.1.0 multiprocess==0.70.16 numpy==2.0.2 packaging==24.2 pandas==2.2.3 propcache==0.3.0 pyarrow==19.0.1 python-dateutil==2.9.0.post0 pytz==2025.1 PyYAML==6.0.2 requests==2.32.3 six==1.17.0 tqdm==4.67.1 typing_extensions==4.12.2 tzdata==2025.1 urllib3==2.3.0 xxhash==3.5.0 yarl==1.18.3 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7458/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7458/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7457
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7457/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7457/comments
https://api.github.com/repos/huggingface/datasets/issues/7457/events
https://github.com/huggingface/datasets/issues/7457
2,924,886,467
I_kwDODunzps6uVjnD
7,457
Document the HF_DATASETS_CACHE env variable
{ "avatar_url": "https://avatars.githubusercontent.com/u/92166725?v=4", "events_url": "https://api.github.com/users/LSerranoPEReN/events{/privacy}", "followers_url": "https://api.github.com/users/LSerranoPEReN/followers", "following_url": "https://api.github.com/users/LSerranoPEReN/following{/other_user}", "gists_url": "https://api.github.com/users/LSerranoPEReN/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LSerranoPEReN", "id": 92166725, "login": "LSerranoPEReN", "node_id": "U_kgDOBX5aRQ", "organizations_url": "https://api.github.com/users/LSerranoPEReN/orgs", "received_events_url": "https://api.github.com/users/LSerranoPEReN/received_events", "repos_url": "https://api.github.com/users/LSerranoPEReN/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LSerranoPEReN/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LSerranoPEReN/subscriptions", "type": "User", "url": "https://api.github.com/users/LSerranoPEReN", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Harry-Yang0518", "id": 129883215, "login": "Harry-Yang0518", "node_id": "U_kgDOB73cTw", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "type": "User", "url": "https://api.github.com/users/Harry-Yang0518", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4", "events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}", "followers_url": "https://api.github.com/users/Harry-Yang0518/followers", "following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}", "gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Harry-Yang0518", "id": 129883215, "login": "Harry-Yang0518", "node_id": "U_kgDOB73cTw", "organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs", "received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events", "repos_url": "https://api.github.com/users/Harry-Yang0518/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions", "type": "User", "url": "https://api.github.com/users/Harry-Yang0518", "user_view_type": "public" } ]
null
[ "Strongly agree to this, in addition, I am also suffering to change the cache location similar to other issues (since I changed the environmental variables).\nhttps://github.com/huggingface/datasets/issues/6886", "`HF_DATASETS_CACHE` should be documented there indeed, feel free to open a PR :) ", "Hey, I’d love to work on this issue! Could you assign it to me?", "sure ! you can also comment #self-assign in an issue and a bot assigns you automatically :)" ]
2025-03-17T12:24:50Z
2025-05-06T15:54:39Z
2025-05-06T15:54:39Z
NONE
null
null
null
null
### Feature request Hello, I have a use case where my team is sharing models and dataset in shared directory to avoid duplication. I noticed that the [cache documentation for datasets](https://huggingface.co/docs/datasets/main/en/cache) only mention the `HF_HOME` environment variable but never the `HF_DATASETS_CACHE`. It should be nice to add `HF_DATASETS_CACHE` to datasets documentation if it's an intended feature. If it's not, I think a depreciation warning would be appreciated. ### Motivation This variable is fully working and similar to what `HF_HUB_CACHE` does for models, so it's nice to know that this exists. This seems to be a quick change to implement. ### Your contribution I could contribute since this is only affecting a small portion of the documentation
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7457/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7457/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7456
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7456/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7456/comments
https://api.github.com/repos/huggingface/datasets/issues/7456/events
https://github.com/huggingface/datasets/issues/7456
2,922,676,278
I_kwDODunzps6uNIA2
7,456
.add_faiss_index and .add_elasticsearch_index returns ImportError at Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/109490785?v=4", "events_url": "https://api.github.com/users/MapleBloom/events{/privacy}", "followers_url": "https://api.github.com/users/MapleBloom/followers", "following_url": "https://api.github.com/users/MapleBloom/following{/other_user}", "gists_url": "https://api.github.com/users/MapleBloom/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MapleBloom", "id": 109490785, "login": "MapleBloom", "node_id": "U_kgDOBoayYQ", "organizations_url": "https://api.github.com/users/MapleBloom/orgs", "received_events_url": "https://api.github.com/users/MapleBloom/received_events", "repos_url": "https://api.github.com/users/MapleBloom/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MapleBloom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MapleBloom/subscriptions", "type": "User", "url": "https://api.github.com/users/MapleBloom", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I can fix this.\nIt's mainly because faiss-gpu requires python<=3.10 but the default python version in colab is 3.11. We just have to downgrade the CPython version down to 3.10 and it should work fine.\n", "I think I just had no chance to meet with faiss-cpu.\nIt could be import problem? \n_has_faiss gets its value at the beginning of datasets/search.\nI tried to call object before import faiss, so _has_faiss took False. And never updated later. ", "Yes you can't meet the requirements because faiss-cpu runs only on\r\npython3.10 and lower but the default version for colab is python3.11 which\r\nresults in pip not being able to find wheels for faiss-cpu with python3.11.\r\n\r\nOn Mon, 17 Mar, 2025, 3:56 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>\r\n>\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> you can't meet the requirements\n\nIt is not the case (or I didn't reach this point) because the same code in notebook\n```importlib.util.find_spec(\"faiss\")```\nfinds faiss. I've mention it.\nI think the problem is in the very moment when _has_faiss takes its value and never try again. \n(or it couldn't find the path that was easily found when started from my code)", "When you run the first cell containing pip install faiss-cpu does it\r\ninstall it?\r\n\r\nOn Mon, 17 Mar, 2025, 8:01 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>\r\n>\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> When you run the first cell containing pip install faiss-cpu does it\n> install it?\n> […](#)\n\nYes. It was installed succesfully. \nMethods of datasets library that depends on _has_faiss constant didn't start to work." ]
2025-03-16T00:51:49Z
2025-03-17T15:57:19Z
null
NONE
null
null
null
null
### Describe the bug At Google Colab ```!pip install faiss-cpu``` works ```import faiss``` no error but ```embeddings_dataset.add_faiss_index(column='embeddings')``` returns ``` [/usr/local/lib/python3.11/dist-packages/datasets/search.py](https://localhost:8080/#) in init(self, device, string_factory, metric_type, custom_index) 247 self.faiss_index = custom_index 248 if not _has_faiss: --> 249 raise ImportError( 250 "You must install Faiss to use FaissIndex. To do so you can run conda install -c pytorch faiss-cpu or conda install -c pytorch faiss-gpu. " 251 "A community supported package is also available on pypi: pip install faiss-cpu or pip install faiss-gpu. " ``` because ```_has_faiss = importlib.util.find_spec("faiss") is not None``` at the beginning of ```datasets/search.py``` returns ```False``` when the same code at colab notebook returns ```ModuleSpec(name='faiss', loader=<_frozen_importlib_external.SourceFileLoader object at 0x7b7851449f50>, origin='/usr/local/lib/python3.11/dist-packages/faiss/init.py', submodule_search_locations=['/usr/local/lib/python3.11/dist-packages/faiss'])``` But ``` import datasets datasets.search._has_faiss ``` at ```colab notebook``` also returns ```False``` The same story with ```_has_elasticsearch``` ### Steps to reproduce the bug 1. Follow https://huggingface.co/learn/nlp-course/chapter5/6?fw=pt at Google Colab 2. till ```embeddings_dataset.add_faiss_index(column='embeddings')``` 3. ```embeddings_dataset.add_elasticsearch_index(column='embeddings')``` 4. https://colab.research.google.com/drive/1h2cjuiClblqzbNQgrcoLYOC8zBqTLLcv#scrollTo=3ddzRp72auOF ### Expected behavior I've only started Tutorial and don't know exactly. But something tells me that ```embeddings_dataset.add_faiss_index(column='embeddings')``` should work without ```Import Error``` ### Environment info Google Colab notebook with default config
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7456/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7456/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7455/comments
https://api.github.com/repos/huggingface/datasets/issues/7455/events
https://github.com/huggingface/datasets/issues/7455
2,921,933,250
I_kwDODunzps6uKSnC
7,455
Problems with local dataset after upgrade from 3.3.2 to 3.4.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/60151338?v=4", "events_url": "https://api.github.com/users/andjoer/events{/privacy}", "followers_url": "https://api.github.com/users/andjoer/followers", "following_url": "https://api.github.com/users/andjoer/following{/other_user}", "gists_url": "https://api.github.com/users/andjoer/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andjoer", "id": 60151338, "login": "andjoer", "node_id": "MDQ6VXNlcjYwMTUxMzM4", "organizations_url": "https://api.github.com/users/andjoer/orgs", "received_events_url": "https://api.github.com/users/andjoer/received_events", "repos_url": "https://api.github.com/users/andjoer/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andjoer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andjoer/subscriptions", "type": "User", "url": "https://api.github.com/users/andjoer", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! I just released 3.4.1 with a fix, let me know if it's working now !" ]
2025-03-15T09:22:50Z
2025-03-17T16:20:43Z
null
NONE
null
null
null
null
### Describe the bug I was not able to open a local saved dataset anymore that was created using an older datasets version after the upgrade yesterday from datasets 3.3.2 to 3.4.0 The traceback is ``` Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 67, in _generate_tables batches = pa.ipc.open_stream(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 190, in open_stream return RecordBatchStreamReader(source, options=options, File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 52, in __init__ self._open(source, options=options, memory_pool=memory_pool) File "pyarrow/ipc.pxi", line 1006, in pyarrow.lib._RecordBatchStreamReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Expected to read 538970747 metadata bytes, but only read 2126 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1855, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 69, in _generate_tables reader = pa.ipc.open_file(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 234, in open_file return RecordBatchFileReader( File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 110, in __init__ self._open(source, footer_offset=footer_offset, File "pyarrow/ipc.pxi", line 1090, in pyarrow.lib._RecordBatchFileReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Not an Arrow file ``` ### Steps to reproduce the bug Load a dataset from a local folder with ``` dataset = load_dataset( args.train_data_dir, cache_dir=args.cache_dir, ) ``` as it is done for example in the training script for SD3 controlnet. This is the minimal script to test it: ``` from datasets import load_dataset def main(): dataset = load_dataset( "local_dataset", ) print(dataset) print("Sample data:", dataset["train"][0]) if __name__ == "__main__": main() ```` ### Expected behavior Work in 3.4.0 like in 3.3.2 ### Environment info - `datasets` version: 3.4.0 - Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7455/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7455/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7449
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7449/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7449/comments
https://api.github.com/repos/huggingface/datasets/issues/7449/events
https://github.com/huggingface/datasets/issues/7449
2,916,235,092
I_kwDODunzps6t0jdU
7,449
Cannot load data with different schemas from different parquet files
{ "avatar_url": "https://avatars.githubusercontent.com/u/39846316?v=4", "events_url": "https://api.github.com/users/li-plus/events{/privacy}", "followers_url": "https://api.github.com/users/li-plus/followers", "following_url": "https://api.github.com/users/li-plus/following{/other_user}", "gists_url": "https://api.github.com/users/li-plus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/li-plus", "id": 39846316, "login": "li-plus", "node_id": "MDQ6VXNlcjM5ODQ2MzE2", "organizations_url": "https://api.github.com/users/li-plus/orgs", "received_events_url": "https://api.github.com/users/li-plus/received_events", "repos_url": "https://api.github.com/users/li-plus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/li-plus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li-plus/subscriptions", "type": "User", "url": "https://api.github.com/users/li-plus", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! `load_dataset` expects all the data_files to have the same schema.\n\nMaybe you can try enforcing certain `features` using:\n\n```python\nfeatures = Features({\"conversations\": {'content': Value('string'), 'role': Value('string',)}})\nds = load_dataset(..., features=features)\n```", "Thanks! It works if I explicitly specify all nested fields of the data." ]
2025-03-13T08:14:49Z
2025-03-17T07:27:48Z
2025-03-17T07:27:46Z
NONE
null
null
null
null
### Describe the bug Cannot load samples with optional fields from different files. The schema cannot be correctly derived. ### Steps to reproduce the bug When I place two samples with an optional field `some_extra_field` within a single parquet file, it can be loaded via `load_dataset`. ```python import pandas as pd from datasets import load_dataset data = [ {'conversations': {'role': 'user', 'content': 'hello'}}, {'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}} ] df = pd.DataFrame(data) df.to_parquet('data.parquet') dataset = load_dataset('parquet', data_files='data.parquet', split='train') print(dataset.features) ``` The schema can be derived. `some_extra_field` is set to None for the first row where it is absent. ``` {'conversations': {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None), 'some_extra_field': Value(dtype='string', id=None)}} ``` However, when I separate the samples into different files, it cannot be loaded. ```python import pandas as pd from datasets import load_dataset data1 = [{'conversations': {'role': 'user', 'content': 'hello'}}] pd.DataFrame(data1).to_parquet('data1.parquet') data2 = [{'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}}] pd.DataFrame(data2).to_parquet('data2.parquet') dataset = load_dataset('parquet', data_files=['data1.parquet', 'data2.parquet'], split='train') print(dataset.features) ``` Traceback: ``` Traceback (most recent call last): File "/home/tiger/.local/lib/python3.9/site-packages/datasets/builder.py", line 1854, in _prepare_split_single for _, table in generator: File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema arrays = [ File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp> cast_array_to_feature( File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2108, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}") TypeError: Couldn't cast array of type struct<content: string, role: string, some_extra_field: string> to {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None)} ``` ### Expected behavior Correctly load data with optional fields from different parquet files. ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.10.135.bsk.4-amd64-x86_64-with-glibc2.31 - Python version: 3.9.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/39846316?v=4", "events_url": "https://api.github.com/users/li-plus/events{/privacy}", "followers_url": "https://api.github.com/users/li-plus/followers", "following_url": "https://api.github.com/users/li-plus/following{/other_user}", "gists_url": "https://api.github.com/users/li-plus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/li-plus", "id": 39846316, "login": "li-plus", "node_id": "MDQ6VXNlcjM5ODQ2MzE2", "organizations_url": "https://api.github.com/users/li-plus/orgs", "received_events_url": "https://api.github.com/users/li-plus/received_events", "repos_url": "https://api.github.com/users/li-plus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/li-plus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li-plus/subscriptions", "type": "User", "url": "https://api.github.com/users/li-plus", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7449/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7449/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7448
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7448/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7448/comments
https://api.github.com/repos/huggingface/datasets/issues/7448/events
https://github.com/huggingface/datasets/issues/7448
2,916,025,762
I_kwDODunzps6tzwWi
7,448
`datasets.disable_caching` doesn't work
{ "avatar_url": "https://avatars.githubusercontent.com/u/35629974?v=4", "events_url": "https://api.github.com/users/UCC-team/events{/privacy}", "followers_url": "https://api.github.com/users/UCC-team/followers", "following_url": "https://api.github.com/users/UCC-team/following{/other_user}", "gists_url": "https://api.github.com/users/UCC-team/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/UCC-team", "id": 35629974, "login": "UCC-team", "node_id": "MDQ6VXNlcjM1NjI5OTc0", "organizations_url": "https://api.github.com/users/UCC-team/orgs", "received_events_url": "https://api.github.com/users/UCC-team/received_events", "repos_url": "https://api.github.com/users/UCC-team/repos", "site_admin": false, "starred_url": "https://api.github.com/users/UCC-team/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/UCC-team/subscriptions", "type": "User", "url": "https://api.github.com/users/UCC-team", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "cc", "Yes I have the same issue. It's a confusingly named function. See [here](https://github.com/huggingface/datasets/blob/main/src/datasets/fingerprint.py#L115-L130)\n\n```\n...\nIf disabled, the library will no longer reload cached datasets files when applying transforms to the datasets.\n More precisely, if the caching is disabled:\n - cache files are always recreated\n - cache files are written to a temporary directory that is deleted when session closes\n - cache files are named using a random hash instead of the dataset fingerprint\n```\n\nAlso, unfortunately the member variable `ds.cache_files` is not populated either.\n\nI'll let you know if I find a solution." ]
2025-03-13T06:40:12Z
2025-03-22T04:37:07Z
null
NONE
null
null
null
null
When I use `Dataset.from_generator(my_gen)` to load my dataset, it simply skips my changes to the generator function. I tried `datasets.disable_caching`, but it doesn't work!
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7448/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7448/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7447
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7447/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7447/comments
https://api.github.com/repos/huggingface/datasets/issues/7447/events
https://github.com/huggingface/datasets/issues/7447
2,915,233,248
I_kwDODunzps6twu3g
7,447
Epochs shortened after resuming mid-epoch with Iterable dataset+StatefulDataloader(persistent_workers=True)
{ "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dhruvdcoder", "id": 4356534, "login": "dhruvdcoder", "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "type": "User", "url": "https://api.github.com/users/dhruvdcoder", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting ! Maybe we should store the epoch in the state_dict, and then when the dataset is iterated on again after setting a new epoch it should restart from scratch instead of resuming ? wdyt ?", "But why does this only happen when `persistent_workers=True`? I would expect it to work correctly even without storing the epoch number in the state_dict of the iterable dataset. ", "I think persistent_workers=False simply ignores the dataset state_dict when it starts a new epoch, that's why the issue doesn't appear in that case", "I opened https://github.com/huggingface/datasets/pull/7451 to fix the issue, let me know if it works for you", "I just released `datasets` 3.4 that includes the fix :)\n\nPS: in your script you probably want to set the epoch like this, otherwise it's still set to 0 after the first epoch:\n\n```diff\n if state_dict is None:\n- ds.set_epoch(epoch)\n epoch += 1\n+ ds.set_epoch(epoch)\n```", "@lhoestq \nIf I understand correctly, the issue was:\nwhen training saves a checkpoint of dataloader in epoch 1, the resumed training only consumes partial data in epoch 2, 3, etc.\n\nHowever, with the fix we are facing the issue that:\nwhen training saves a checkpoint of dataloader in epoch 2, the resumed training starts from scratch instead of consuming remaining partial data in epoch 2.\n\nThis makes training inconsistent between resuming from a checkpoint vs. original training if continued without a checkpoint." ]
2025-03-12T21:41:05Z
2025-07-09T23:04:57Z
2025-03-14T10:50:10Z
NONE
null
null
null
null
### Describe the bug When `torchdata.stateful_dataloader.StatefulDataloader(persistent_workers=True)` the epochs after resuming only iterate through the examples that were left in the epoch when the training was interrupted. For example, in the script below training is interrupted on step 124 (epoch 1) when 3 batches are left. Then after resuming, the rest of epochs (2 and 3) only iterate through these 3 batches. ### Steps to reproduce the bug Run the following script with and with PERSISTENT_WORKERS=true. ```python # !/usr/bin/env python3 # torch==2.5.1 # datasets==3.3.2 # torchdata>=0.9.0 import datasets import pprint from torchdata.stateful_dataloader import StatefulDataLoader import os PERSISTENT_WORKERS = ( os.environ.get("PERSISTENT_WORKERS", "False").lower() == "true" ) # PERSISTENT_WORKERS = True # Incorrect resume # ds = datasets.load_from_disk("dataset").to_iterable_dataset(num_shards=4) def generator(): for i in range(128): yield {"x": i} ds = datasets.Dataset.from_generator( generator, features=datasets.Features({"x": datasets.Value("int32")}) ).to_iterable_dataset(num_shards=4) dl = StatefulDataLoader( ds, batch_size=2, num_workers=2, persistent_workers=PERSISTENT_WORKERS ) global_step = 0 epoch = 0 ds_state_dict = None state_dict = None resumed = False while True: if epoch >= 3: break if state_dict is not None: dl.load_state_dict(state_dict) state_dict = None ds_state_dict = None resumed = True print("resumed") for i, batch in enumerate(dl): print(f"epoch: {epoch}, global_step: {global_step}, batch: {batch}") global_step += 1 # consume datapoint # simulate error if global_step == 124 and not resumed: ds_state_dict = ds.state_dict() state_dict = dl.state_dict() print("checkpoint") print("ds_state_dict") pprint.pprint(ds_state_dict) print("dl_state_dict") pprint.pprint(state_dict) break if state_dict is None: ds.set_epoch(epoch) epoch += 1 ``` The script checkpoints when there are three batches left in the second epoch. After resuming, only the last three batches are repeated in the rest of the epochs. If it helps, following are the two state_dicts for the dataloader save at the same step with the two settings. The left one is for `PERSISTENT_WORKERS=False` ![Image](https://github.com/user-attachments/assets/c97d6502-d7bd-4ef4-ae2d-66fe1a9732b1) ### Expected behavior All the elements in the dataset should be iterated through in the epochs following the one where we resumed. The expected behavior can be seen by setting `PERSISTENT_WORKERS=False`. ### Environment info torch==2.5.1 datasets==3.3.2 torchdata>=0.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7447/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7447/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7446/comments
https://api.github.com/repos/huggingface/datasets/issues/7446/events
https://github.com/huggingface/datasets/issues/7446
2,913,050,552
I_kwDODunzps6toZ-4
7,446
pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int'
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I think the Counter object you used in 'labels' may be the issue, since the {2:1} inside is the dict and 2 is the int", "> I think the Counter object you used in 'labels' may be the issue, since the {2:1} inside is the dict and 2 is the int我认为您在 'labels' 中使用的 Counter 对象可能是问题所在,因为里面的 {2:1} 是 dict,而 2 是 int\n\nYes, that's the point." ]
2025-03-12T07:48:37Z
2025-07-04T05:14:45Z
2025-07-04T05:14:45Z
NONE
null
null
null
null
### Describe the bug A dict with its keys are all str but get following error ```python test_data=[{'input_ids':[1,2,3],'labels':[[Counter({2:1})]]}] dataset = datasets.Dataset.from_list(test_data) ``` ```bash pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info datasets 3.3.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7446/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7446/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7444/comments
https://api.github.com/repos/huggingface/datasets/issues/7444/events
https://github.com/huggingface/datasets/issues/7444
2,911,202,445
I_kwDODunzps6thWyN
7,444
Excessive warnings when resuming an IterableDataset+buffered shuffle+DDP.
{ "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dhruvdcoder", "id": 4356534, "login": "dhruvdcoder", "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "type": "User", "url": "https://api.github.com/users/dhruvdcoder", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I had a similar issue when loading the saved iterable dataset state to fast-forward to the mid-train location before resuming. This happened when I shuffled a concatenated dataset. A `iterable_data_state_dict.json` file was saved during checkpointing in the Trainer with:\n```\ndef _save_rng_state(self, output_dir):\n super()._save_rng_state(output_dir)\n if self.args.should_save:\n with open(os.path.join(output_dir, f'iterable_data_state_dict.json'), 'w', encoding='utf-8') as fo:\n json.dump(self.train_dataset.state_dict(), fo, ensure_ascii=False)\n```\nThen when resuming training, I use `load_state_dict` to get the dataset state:\n```\nif training_args.resume_from_checkpoint:\n if isinstance(training_args.resume_from_checkpoint, bool):\n resume_from_checkpoint = get_last_checkpoint(training_args.output_dir)\n else:\n resume_from_checkpoint = training_args.resume_from_checkpoint\n last_ckpt_iterable_data_state_dict_file_path = os.path.join(resume_from_checkpoint, f'iterable_data_state_dict.json')\n if not training_args.ignore_data_skip:\n raise ValueError(f'Please set `ignore_data_skip`=True to skip tokenization.')\n with open(last_ckpt_iterable_data_state_dict_file_path, 'r', encoding='utf-8') as f:\n train_dataset_state_dict = json.load(f)\n train_dataset.load_state_dict(train_dataset_state_dict)\n print(f'Loaded train_dataset state from {last_ckpt_iterable_data_state_dict_file_path}')\n```\n\nThen code works fine before I shuffled a subset of the training data to:\n```\nmath_dataset = concatenate_datasets([A, B]).to_iterable_dataset()\nshuffled_math_dataset = math_dataset.shuffle(seed=42, buffer_size=1000000)\n```\n\nOther than the warning, a real problem is that the loss bumped after loading a ckpt:\n\n<img width=\"400\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/c8944e81-9df9-4857-82de-6ab9ebc1b066\" />" ]
2025-03-11T16:34:39Z
2025-05-13T09:41:03Z
null
NONE
null
null
null
null
### Describe the bug I have a large dataset that I shared into 1024 shards and save on the disk during pre-processing. During training, I load the dataset using load_from_disk() and convert it into an iterable dataset, shuffle it and split the shards to different DDP nodes using the recommended method. However, when the training is resumed mid-epoch, I get thousands of identical warning messages: ``` Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. ``` ### Steps to reproduce the bug 1. Run a multi-node training job using the following python script and interrupt the training after a few seconds to save a mid-epoch checkpoint. ```python #!/usr/bin/env python import os import time from typing import Dict, List import torch import lightning as pl from torch.utils.data import DataLoader from datasets import Dataset from datasets.distributed import split_dataset_by_node import datasets from transformers import AutoTokenizer from more_itertools import flatten, chunked from torchdata.stateful_dataloader import StatefulDataLoader from lightning.pytorch.callbacks.on_exception_checkpoint import ( OnExceptionCheckpoint, ) datasets.logging.set_verbosity_debug() def dummy_generator(): # Generate 60 examples: integers from $0$ to $59$ # 64 sequences of different lengths dataset = [ list(range(3, 10)), list(range(10, 15)), list(range(15, 21)), list(range(21, 27)), list(range(27, 31)), list(range(31, 36)), list(range(36, 45)), list(range(45, 50)), ] for i in range(8): for j, ids in enumerate(dataset): yield {"token_ids": [idx + i * 50 for idx in ids]} def group_texts( examples: Dict[str, List[List[int]]], block_size: int, eos_token_id: int, bos_token_id: int, pad_token_id: int, ) -> Dict[str, List[List[int]]]: real_block_size = block_size - 2 # make space for bos and eos # colapse the sequences into a single list of tokens and then create blocks of real_block_size input_ids = [] attention_mask = [] for block in chunked(flatten(examples["token_ids"]), real_block_size): s = [bos_token_id] + list(block) + [eos_token_id] ls = len(s) attn = [True] * ls s += [pad_token_id] * (block_size - ls) attn += [False] * (block_size - ls) input_ids.append(s) attention_mask.append(attn) return {"input_ids": input_ids, "attention_mask": attention_mask} def collate_fn(batch): return { "input_ids": torch.tensor( [item["input_ids"] for item in batch], dtype=torch.long ), "attention_mask": torch.tensor( [item["attention_mask"] for item in batch], dtype=torch.long ), } class DummyModule(pl.LightningModule): def __init__(self): super().__init__() # A dummy linear layer (not used for actual computation) self.layer = torch.nn.Linear(1, 1) self.ds = None self.prepare_data_per_node = False def on_train_start(self): # This hook is called once training begins on each process. print(f"[Rank {self.global_rank}] Training started.", flush=True) self.data_file = open(f"data_{self.global_rank}.txt", "w") def on_train_end(self): self.data_file.close() def training_step(self, batch, batch_idx): # Print batch information to verify data loading. time.sleep(5) # print("batch", batch, flush=True) print( f"\n[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}\n" ) # Compute a dummy loss (here, simply a constant tensor) loss = torch.tensor(0.0, requires_grad=True) return loss def on_train_epoch_start(self): epoch = self.trainer.current_epoch print( f"[Rank {self.global_rank}] Training epoch {epoch} started.", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training epoch {epoch} started.\n" ) def configure_optimizers(self): # Return a dummy optimizer. return torch.optim.SGD(self.parameters(), lr=0.001) class DM(pl.LightningDataModule): def __init__(self): super().__init__() self.ds = None self.prepare_data_per_node = False def set_epoch(self, epoch: int): self.ds.set_epoch(epoch) def prepare_data(self): # download the dataset dataset = Dataset.from_generator(dummy_generator) # save the dataset dataset.save_to_disk("dataset", num_shards=4) def setup(self, stage: str): # load the dataset ds = datasets.load_from_disk("dataset").to_iterable_dataset( num_shards=4 ) ds = ds.map( group_texts, batched=True, batch_size=5, fn_kwargs={ "block_size": 5, "eos_token_id": 1, "bos_token_id": 0, "pad_token_id": 2, }, remove_columns=["token_ids"], ).shuffle(seed=42, buffer_size=8) ds = split_dataset_by_node( ds, rank=self.trainer.global_rank, world_size=self.trainer.world_size, ) self.ds = ds def train_dataloader(self): print( f"[Rank {self.trainer.global_rank}] Preparing train_dataloader...", flush=True, ) rank = self.trainer.global_rank print( f"[Rank {rank}] Global rank: {self.trainer.global_rank}", flush=True, ) world_size = self.trainer.world_size print(f"[Rank {rank}] World size: {world_size}", flush=True) return StatefulDataLoader( self.ds, batch_size=2, num_workers=2, collate_fn=collate_fn, drop_last=True, persistent_workers=True, ) if __name__ == "__main__": print("Starting Lightning training", flush=True) # Optionally, print some SLURM environment info for debugging. print(f"SLURM_NNODES: {os.environ.get('SLURM_NNODES', '1')}", flush=True) # Determine the number of nodes from SLURM (defaulting to 1 if not set) num_nodes = int(os.environ.get("SLURM_NNODES", "1")) model = DummyModule() dm = DM() on_exception = OnExceptionCheckpoint( dirpath="checkpoints", filename="on_exception", ) # Configure the Trainer to use distributed data parallel (DDP). trainer = pl.Trainer( accelerator="gpu" if torch.cuda.is_available() else "cpu", devices=1, strategy=( "ddp" if num_nodes > 1 else "auto" ), # Use DDP strategy for multi-node training. num_nodes=num_nodes, max_epochs=2, logger=False, enable_checkpointing=True, num_sanity_val_steps=0, enable_progress_bar=False, callbacks=[on_exception], ) # resume (uncomment to resume) # trainer.fit(model, datamodule=dm, ckpt_path="checkpoints/on_exception.ckpt") # train trainer.fit(model, datamodule=dm) ``` ```bash #!/bin/bash #SBATCH --job-name=pl_ddp_test #SBATCH --nodes=2 # Adjust number of nodes as needed #SBATCH --ntasks-per-node=1 # One GPU (process) per node #SBATCH --cpus-per-task=3 # At least as many dataloader workers as required #SBATCH --gres=gpu:1 # Request one GPU per node #SBATCH --time=00:10:00 # Job runtime (adjust as needed) #SBATCH --partition=gpu-preempt # Partition or queue name #SBATCH -o script.out # Disable Python output buffering. export PYTHONUNBUFFERED=1 echo "SLURM job starting on $(date)" echo "Running on nodes: $SLURM_NODELIST" echo "Current directory: $(pwd)" ls -l # Launch the script using srun so that each process starts the Lightning module. srun script.py ``` 2. Uncomment the "resume" line (second to last) and comment the original `trainer.fit` call (last line). It will produce the following log. ``` [Rank 0] Preparing train_dataloader... [Rank 0] Global rank: 0 [Rank 0] World size: 2 [Rank 1] Preparing train_dataloader... [Rank 1] Global rank: 1 [Rank 1] World size: 2 Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. [Rank 0] Training started. [Rank 0] Training epoch 0 started. [Rank 0] Training epoch 1 started. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. `Trainer.fit` stopped: `max_epochs=2` reached. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. [Rank 1] Training started. [Rank 1] Training epoch 0 started. [Rank 1] Training epoch 1 started. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` I'm also attaching the relevant state_dict to make sure that the state is being checkpointed as expected. ``` {'_iterator_finished': True, '_snapshot': {'_last_yielded_worker_id': 1, '_main_snapshot': {'_IterableDataset_len_called': None, '_base_seed': 3992758080362545099, '_index_sampler_state': {'samples_yielded': 64}, '_num_workers': 2, '_sampler_iter_state': None, '_sampler_iter_yielded': 32, '_shared_seed': None}, '_snapshot_step': 32, '_worker_snapshots': {'worker_0': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 0}, 'worker_1': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 1}}}, '_steps_since_snapshot': 0} ``` ### Expected behavior Since I'm following all the recommended steps, I don't expect to see any warning when resuming. Am I doing something wrong? Also, can someone explain why I'm seeing 20 identical messages in the log in this reproduction setting? I'm trying to understand why I see thousands of these messages with the actual dataset. One more surprising thing I noticed in the logs is the change in a number of shards per worker. In the following messages, the denominator changes from 2 to 1. ``` node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. ... node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` ### Environment info python: 3.11.10 datasets: 3.3.2 lightning: 2.3.1
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7444/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7444/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7443
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7443/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7443/comments
https://api.github.com/repos/huggingface/datasets/issues/7443/events
https://github.com/huggingface/datasets/issues/7443
2,908,585,656
I_kwDODunzps6tXX64
7,443
index error when num_shards > len(dataset)
{ "avatar_url": "https://avatars.githubusercontent.com/u/17934496?v=4", "events_url": "https://api.github.com/users/eminorhan/events{/privacy}", "followers_url": "https://api.github.com/users/eminorhan/followers", "following_url": "https://api.github.com/users/eminorhan/following{/other_user}", "gists_url": "https://api.github.com/users/eminorhan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eminorhan", "id": 17934496, "login": "eminorhan", "node_id": "MDQ6VXNlcjE3OTM0NDk2", "organizations_url": "https://api.github.com/users/eminorhan/orgs", "received_events_url": "https://api.github.com/users/eminorhan/received_events", "repos_url": "https://api.github.com/users/eminorhan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eminorhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eminorhan/subscriptions", "type": "User", "url": "https://api.github.com/users/eminorhan", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Actually, looking at the code a bit more carefully, maybe an even better solution is to explicitly set `num_shards=len(self)` somewhere inside both `push_to_hub()` and `save_to_disk()` when these functions are invoked with `num_shards > len(dataset)`." ]
2025-03-10T22:40:59Z
2025-03-10T23:43:08Z
null
NONE
null
null
null
null
In `ds.push_to_hub()` and `ds.save_to_disk()`, `num_shards` must be smaller than or equal to the number of rows in the dataset, but currently this is not checked anywhere inside these functions. Attempting to invoke these functions with `num_shards > len(dataset)` should raise an informative `ValueError`. I frequently work with datasets with a small number of rows where each row is pretty large, so I often encounter this issue, where the function runs until the shard index in `ds.shard(num_shards, indx)` goes out of bounds. Ideally, a `ValueError` should be raised before reaching this point (i.e. as soon as `ds.push_to_hub()` or `ds.save_to_disk()` is invoked with `num_shards > len(dataset)`). It seems that adding something like: ```python if len(self) < num_shards: raise ValueError(f"num_shards ({num_shards}) must be smaller than or equal to the number of rows in the dataset ({len(self)}). Please either reduce num_shards or increase max_shard_size to make sure num_shards <= len(dataset).") ``` to the beginning of the definition of the `ds.shard()` function [here](https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/arrow_dataset.py#L4728) would deal with this issue for both `ds.push_to_hub()` and `ds.save_to_disk()`, but I'm not exactly sure if this is the best place to raise the `ValueError` (it seems that a more correct way to do it would be to write separate checks for `ds.push_to_hub()` and `ds.save_to_disk()`). I'd be happy to submit a PR if you think something along these lines would be acceptable.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7443/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7443/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7442
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7442/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7442/comments
https://api.github.com/repos/huggingface/datasets/issues/7442/events
https://github.com/huggingface/datasets/issues/7442
2,905,543,017
I_kwDODunzps6tLxFp
7,442
Flexible Loader
{ "avatar_url": "https://avatars.githubusercontent.com/u/13894030?v=4", "events_url": "https://api.github.com/users/dipta007/events{/privacy}", "followers_url": "https://api.github.com/users/dipta007/followers", "following_url": "https://api.github.com/users/dipta007/following{/other_user}", "gists_url": "https://api.github.com/users/dipta007/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dipta007", "id": 13894030, "login": "dipta007", "node_id": "MDQ6VXNlcjEzODk0MDMw", "organizations_url": "https://api.github.com/users/dipta007/orgs", "received_events_url": "https://api.github.com/users/dipta007/received_events", "repos_url": "https://api.github.com/users/dipta007/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dipta007/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dipta007/subscriptions", "type": "User", "url": "https://api.github.com/users/dipta007", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?", "> Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?\n\nThat would be perfect if not at least a flexible loader.", "@lhoestq For now, you can use this small utility library: [nanoml](https://pypi.org/project/nanoml/)\n```python\nfrom nanoml.data import load_dataset_flexible\n```\n\nI actively develop and maintain this utility library. Open to contributors. Please open issues, PR, or feature requests." ]
2025-03-09T16:55:03Z
2025-03-27T23:58:17Z
null
NONE
null
null
null
null
### Feature request Can we have a utility function that will use `load_from_disk` when given the local path and `load_dataset` if given an HF dataset? It can be something as simple as this one: ``` def load_hf_dataset(path_or_name): if os.path.exists(path_or_name): return load_from_disk(path_or_name) else: return load_dataset(path_or_name) ``` ### Motivation This can be done inside the user codebase, too, but in my experience, it becomes repetitive code. ### Your contribution I can open a pull request.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7442/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7442/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7441
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7441/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7441/comments
https://api.github.com/repos/huggingface/datasets/issues/7441/events
https://github.com/huggingface/datasets/issues/7441
2,904,702,329
I_kwDODunzps6tIj15
7,441
`drop_last_batch` does not drop the last batch using IterableDataset + interleave_datasets + multi_worker
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi @memray, I’d like to help fix the issue with `drop_last_batch` not working when `num_workers > 1`. I’ll investigate and propose a solution. Thanks!\n", "Thank you very much for offering to help! I also noticed a problem related to a previous issue and left a comment [here](https://github.com/huggingface/datasets/issues/6565#issuecomment-2708169303) (the code checks the validity before certain columns removed). Can you take a look as well?" ]
2025-03-08T10:28:44Z
2025-03-09T21:27:33Z
null
NONE
null
null
null
null
### Describe the bug See the script below `drop_last_batch=True` is defined using map() for each dataset. The last batch for each dataset is expected to be dropped, id 21-25. The code behaves as expected when num_workers=0 or 1. When using num_workers>1, 'a-11', 'b-11', 'a-12', 'b-12' are gone and instead 21 and 22 are sampled. ### Steps to reproduce the bug ``` from datasets import Dataset from datasets import interleave_datasets from torch.utils.data import DataLoader def convert_to_str(batch, dataset_name): batch['a'] = [f"{dataset_name}-{e}" for e in batch['a']] return batch def gen1(): for ii in range(1, 25): yield {"a": ii} def gen2(): for ii in range(1, 25): yield {"a": ii} # https://github.com/huggingface/datasets/issues/6565 if __name__ == '__main__': dataset1 = Dataset.from_generator(gen1).to_iterable_dataset(num_shards=2) dataset2 = Dataset.from_generator(gen2).to_iterable_dataset(num_shards=2) dataset1 = dataset1.map(lambda x: convert_to_str(x, dataset_name="a"), batched=True, batch_size=10, drop_last_batch=True) dataset2 = dataset2.map(lambda x: convert_to_str(x, dataset_name="b"), batched=True, batch_size=10, drop_last_batch=True) interleaved = interleave_datasets([dataset1, dataset2], stopping_strategy="all_exhausted") print(f"num_workers=0") loader = DataLoader(interleaved, batch_size=5, num_workers=0) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=1") loader = DataLoader(interleaved, batch_size=5, num_workers=1) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=2") loader = DataLoader(interleaved, batch_size=5, num_workers=2) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=3") loader = DataLoader(interleaved, batch_size=5, num_workers=3) i = 0 for b in loader: print(i, b['a']) i += 1 ``` output is: ``` num_workers=0 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=1 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=2 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=3 Too many dataloader workers: 3 (max is dataset.num_shards=2). Stopping 1 dataloader workers. 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] ``` ### Expected behavior `'a-21', 'b-21', 'a-22', 'b-22'` should be dropped ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-1056-aws-x86_64-with-glibc2.31 - Python version: 3.10.16 - `huggingface_hub` version: 0.28.0 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7441/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7441/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7440
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7440/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7440/comments
https://api.github.com/repos/huggingface/datasets/issues/7440/events
https://github.com/huggingface/datasets/issues/7440
2,903,740,662
I_kwDODunzps6tE5D2
7,440
IterableDataset raises FileNotFoundError instead of retrying
{ "avatar_url": "https://avatars.githubusercontent.com/u/145220868?v=4", "events_url": "https://api.github.com/users/bauwenst/events{/privacy}", "followers_url": "https://api.github.com/users/bauwenst/followers", "following_url": "https://api.github.com/users/bauwenst/following{/other_user}", "gists_url": "https://api.github.com/users/bauwenst/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bauwenst", "id": 145220868, "login": "bauwenst", "node_id": "U_kgDOCKflBA", "organizations_url": "https://api.github.com/users/bauwenst/orgs", "received_events_url": "https://api.github.com/users/bauwenst/received_events", "repos_url": "https://api.github.com/users/bauwenst/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bauwenst/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bauwenst/subscriptions", "type": "User", "url": "https://api.github.com/users/bauwenst", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I have since been training more models with identical architectures over the same dataset, and it is completely unstable. One has now failed at chunk9/1215, whilst others have gotten past that.\n```python\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\nBelow is the full training log, where you can clearly see the intermittent dataset issues. Note again that this model only got to epoch 0.11, whereas I have other models training on the exact same dataset right now that have gotten way beyond that. This is quickly turning into a highly expensive bug which I didn't have issues with in the past half year of using the same setup.\n<details>\n<summary>Training log of failed run</summary>\n\n```python\n 1%| | 64/8192 [56:27<87:25:33, 38.72s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n 1%| | 64/8192 [56:51<87:25:33, 38.72s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:14<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n 2%|▏ | 192/8192 [2:49:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n{'eval_loss': 10.482319831848145, 'eval_runtime': 902.7516, 'eval_samples_per_second': 18.149, 'eval_steps_per_second': 0.142, 'epoch': 0, 'num_input_tokens_seen': 0}\n{'loss': 10.4895, 'grad_norm': 2.9147818088531494, 'learning_rate': 3.90625e-06, 'epoch': 0.0, 'num_input_tokens_seen': 1048576}\n{'loss': 10.4832, 'grad_norm': 2.8206892013549805, 'learning_rate': 7.8125e-06, 'epoch': 0.0, 'num_input_tokens_seen': 2097152}\n{'loss': 10.4851, 'grad_norm': 2.910552978515625, 'learning_rate': 1.171875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 3145728}\n{'loss': 10.486, 'grad_norm': 2.8042073249816895, 'learning_rate': 1.5625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 4194304}\n{'loss': 10.4719, 'grad_norm': 2.83260440826416, 'learning_rate': 1.953125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 5242880}\n{'loss': 10.4482, 'grad_norm': 2.916527032852173, 'learning_rate': 2.34375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 6291456}\n{'loss': 10.4113, 'grad_norm': 2.911870241165161, 'learning_rate': 2.734375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 7340032}\n{'loss': 10.3863, 'grad_norm': 2.8873367309570312, 'learning_rate': 3.125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 8388608}\n{'loss': 10.3557, 'grad_norm': 2.7183432579040527, 'learning_rate': 3.5156250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 9437184}\n{'loss': 10.2795, 'grad_norm': 2.6743927001953125, 'learning_rate': 3.90625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 10485760}\n{'loss': 10.2148, 'grad_norm': 2.3173940181732178, 'learning_rate': 4.296875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 11534336}\n{'loss': 10.1482, 'grad_norm': 2.09787917137146, 'learning_rate': 4.6875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 12582912}\n{'loss': 10.1024, 'grad_norm': 1.889390468597412, 'learning_rate': 5.0781250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 13631488}\n{'loss': 10.0418, 'grad_norm': 1.8319090604782104, 'learning_rate': 5.46875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 14680064}\n{'loss': 10.0081, 'grad_norm': 1.7302652597427368, 'learning_rate': 5.859375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 15728640}\n{'loss': 9.9525, 'grad_norm': 1.767600417137146, 'learning_rate': 6.25e-05, 'epoch': 0.0, 'num_input_tokens_seen': 16777216}\n{'loss': 9.9326, 'grad_norm': 2.1608240604400635, 'learning_rate': 6.640625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 17825792}\n{'loss': 9.8478, 'grad_norm': 1.7399269342422485, 'learning_rate': 7.031250000000001e-05, 'epoch': 0.0, 'num_input_tokens_seen': 18874368}\n{'loss': 9.8215, 'grad_norm': 1.6564425230026245, 'learning_rate': 7.421875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 19922944}\n{'loss': 9.7732, 'grad_norm': 1.6452653408050537, 'learning_rate': 7.8125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 20971520}\n{'loss': 9.6896, 'grad_norm': 1.7053238153457642, 'learning_rate': 8.203125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 22020096}\n{'loss': 9.6356, 'grad_norm': 1.7050201892852783, 'learning_rate': 8.59375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 23068672}\n{'loss': 9.5781, 'grad_norm': 1.7155998945236206, 'learning_rate': 8.984375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 24117248}\n{'loss': 9.5355, 'grad_norm': 1.697864294052124, 'learning_rate': 9.375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 25165824}\n{'loss': 9.4718, 'grad_norm': 1.7598071098327637, 'learning_rate': 9.765625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 26214400}\n{'loss': 9.3972, 'grad_norm': 1.7407673597335815, 'learning_rate': 0.00010156250000000001, 'epoch': 0.0, 'num_input_tokens_seen': 27262976}\n{'loss': 9.3303, 'grad_norm': 1.7710134983062744, 'learning_rate': 0.00010546875, 'epoch': 0.0, 'num_input_tokens_seen': 28311552}\n{'loss': 9.2973, 'grad_norm': 1.716180682182312, 'learning_rate': 0.000109375, 'epoch': 0.0, 'num_input_tokens_seen': 29360128}\n{'loss': 9.2049, 'grad_norm': 1.7579947710037231, 'learning_rate': 0.00011328125, 'epoch': 0.0, 'num_input_tokens_seen': 30408704}\n{'loss': 9.1656, 'grad_norm': 1.6988558769226074, 'learning_rate': 0.0001171875, 'epoch': 0.0, 'num_input_tokens_seen': 31457280}\n{'loss': 9.0966, 'grad_norm': 1.7036350965499878, 'learning_rate': 0.00012109375, 'epoch': 0.0, 'num_input_tokens_seen': 32505856}\n{'loss': 9.0107, 'grad_norm': 1.752451777458191, 'learning_rate': 0.000125, 'epoch': 0.0, 'num_input_tokens_seen': 33554432}\n{'loss': 8.9788, 'grad_norm': 1.6769776344299316, 'learning_rate': 0.00012890625, 'epoch': 0.0, 'num_input_tokens_seen': 34603008}\n{'loss': 8.9155, 'grad_norm': 1.6497987508773804, 'learning_rate': 0.0001328125, 'epoch': 0.0, 'num_input_tokens_seen': 35651584}\n{'loss': 8.8008, 'grad_norm': 1.722798466682434, 'learning_rate': 0.00013671875, 'epoch': 0.0, 'num_input_tokens_seen': 36700160}\n{'loss': 8.7727, 'grad_norm': 1.6046854257583618, 'learning_rate': 0.00014062500000000002, 'epoch': 0.0, 'num_input_tokens_seen': 37748736}\n{'loss': 8.682, 'grad_norm': 1.6132164001464844, 'learning_rate': 0.00014453125, 'epoch': 0.0, 'num_input_tokens_seen': 38797312}\n{'loss': 8.6516, 'grad_norm': 1.558968424797058, 'learning_rate': 0.0001484375, 'epoch': 0.0, 'num_input_tokens_seen': 39845888}\n{'loss': 8.5935, 'grad_norm': 1.6083673238754272, 'learning_rate': 0.00015234375, 'epoch': 0.0, 'num_input_tokens_seen': 40894464}\n{'loss': 8.4852, 'grad_norm': 1.5469273328781128, 'learning_rate': 0.00015625, 'epoch': 0.0, 'num_input_tokens_seen': 41943040}\n{'loss': 8.4342, 'grad_norm': 1.46219801902771, 'learning_rate': 0.00016015625, 'epoch': 0.01, 'num_input_tokens_seen': 42991616}\n{'loss': 8.3213, 'grad_norm': 1.473191261291504, 'learning_rate': 0.0001640625, 'epoch': 0.01, 'num_input_tokens_seen': 44040192}\n{'loss': 8.3193, 'grad_norm': 1.4024137258529663, 'learning_rate': 0.00016796875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 45088768}\n{'loss': 8.1853, 'grad_norm': 1.3591463565826416, 'learning_rate': 0.000171875, 'epoch': 0.01, 'num_input_tokens_seen': 46137344}\n{'loss': 8.1109, 'grad_norm': 1.3547109365463257, 'learning_rate': 0.00017578125, 'epoch': 0.01, 'num_input_tokens_seen': 47185920}\n{'loss': 8.0741, 'grad_norm': 1.268977403640747, 'learning_rate': 0.0001796875, 'epoch': 0.01, 'num_input_tokens_seen': 48234496}\n{'loss': 8.0032, 'grad_norm': 1.222671389579773, 'learning_rate': 0.00018359375, 'epoch': 0.01, 'num_input_tokens_seen': 49283072}\n{'loss': 7.9346, 'grad_norm': 1.154278039932251, 'learning_rate': 0.0001875, 'epoch': 0.01, 'num_input_tokens_seen': 50331648}\n{'loss': 7.8823, 'grad_norm': 1.1396397352218628, 'learning_rate': 0.00019140625, 'epoch': 0.01, 'num_input_tokens_seen': 51380224}\n{'loss': 7.8444, 'grad_norm': 1.0608373880386353, 'learning_rate': 0.0001953125, 'epoch': 0.01, 'num_input_tokens_seen': 52428800}\n{'loss': 7.7794, 'grad_norm': 1.0165436267852783, 'learning_rate': 0.00019921875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 53477376}\n{'loss': 7.7567, 'grad_norm': 0.8742461204528809, 'learning_rate': 0.00020312500000000002, 'epoch': 0.01, 'num_input_tokens_seen': 54525952}\n{'loss': 7.6489, 'grad_norm': 0.8699902296066284, 'learning_rate': 0.00020703125, 'epoch': 0.01, 'num_input_tokens_seen': 55574528}\n{'loss': 7.6062, 'grad_norm': 0.809831440448761, 'learning_rate': 0.0002109375, 'epoch': 0.01, 'num_input_tokens_seen': 56623104}\n{'loss': 7.5511, 'grad_norm': 0.7423847317695618, 'learning_rate': 0.00021484375, 'epoch': 0.01, 'num_input_tokens_seen': 57671680}\n{'loss': 7.4435, 'grad_norm': 0.7614696025848389, 'learning_rate': 0.00021875, 'epoch': 0.01, 'num_input_tokens_seen': 58720256}\n{'loss': 7.564, 'grad_norm': 0.5147746801376343, 'learning_rate': 0.00022265625, 'epoch': 0.01, 'num_input_tokens_seen': 59768832}\n{'loss': 7.5278, 'grad_norm': 0.4705545902252197, 'learning_rate': 0.0002265625, 'epoch': 0.01, 'num_input_tokens_seen': 60817408}\n{'loss': 7.5479, 'grad_norm': 0.3745419979095459, 'learning_rate': 0.00023046875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 61865984}\n{'loss': 7.4759, 'grad_norm': 0.3893500566482544, 'learning_rate': 0.000234375, 'epoch': 0.01, 'num_input_tokens_seen': 62914560}\n{'loss': 7.5032, 'grad_norm': 0.31959569454193115, 'learning_rate': 0.00023828125, 'epoch': 0.01, 'num_input_tokens_seen': 63963136}\n{'loss': 7.421, 'grad_norm': 0.3203206956386566, 'learning_rate': 0.0002421875, 'epoch': 0.01, 'num_input_tokens_seen': 65011712}\n{'loss': 7.4998, 'grad_norm': 0.2730390429496765, 'learning_rate': 0.00024609375, 'epoch': 0.01, 'num_input_tokens_seen': 66060288}\n{'loss': 7.4157, 'grad_norm': 0.34872403740882874, 'learning_rate': 0.00025, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n[2025-03-10 16:17:04 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n[2025-03-10 16:17:04 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 7.471163749694824, 'eval_runtime': 651.4801, 'eval_samples_per_second': 25.149, 'eval_steps_per_second': 0.196, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n{'loss': 7.5083, 'grad_norm': 0.339502215385437, 'learning_rate': 0.00025390625, 'epoch': 0.01, 'num_input_tokens_seen': 68157440}\n{'loss': 7.7083, 'grad_norm': 0.6426190137863159, 'learning_rate': 0.0002578125, 'epoch': 0.01, 'num_input_tokens_seen': 69206016}\n{'loss': 7.446, 'grad_norm': 0.9138129353523254, 'learning_rate': 0.00026171875, 'epoch': 0.01, 'num_input_tokens_seen': 70254592}\n{'loss': 7.3747, 'grad_norm': 1.2179911136627197, 'learning_rate': 0.000265625, 'epoch': 0.01, 'num_input_tokens_seen': 71303168}\n{'loss': 7.367, 'grad_norm': 0.7108445167541504, 'learning_rate': 0.00026953125, 'epoch': 0.01, 'num_input_tokens_seen': 72351744}\n{'loss': 7.4751, 'grad_norm': 0.7580183744430542, 'learning_rate': 0.0002734375, 'epoch': 0.01, 'num_input_tokens_seen': 73400320}\n{'loss': 7.3405, 'grad_norm': 0.7545790076255798, 'learning_rate': 0.00027734375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 74448896}\n{'loss': 7.4194, 'grad_norm': 0.4764443039894104, 'learning_rate': 0.00028125000000000003, 'epoch': 0.01, 'num_input_tokens_seen': 75497472}\n{'loss': 7.2826, 'grad_norm': 0.5942808985710144, 'learning_rate': 0.00028515625, 'epoch': 0.01, 'num_input_tokens_seen': 76546048}\n{'loss': 7.3945, 'grad_norm': 0.5272891521453857, 'learning_rate': 0.0002890625, 'epoch': 0.01, 'num_input_tokens_seen': 77594624}\n{'loss': 7.3492, 'grad_norm': 0.465085506439209, 'learning_rate': 0.00029296875, 'epoch': 0.01, 'num_input_tokens_seen': 78643200}\n{'loss': 7.3658, 'grad_norm': 0.6932719349861145, 'learning_rate': 0.000296875, 'epoch': 0.01, 'num_input_tokens_seen': 79691776}\n{'loss': 7.3554, 'grad_norm': 0.49396172165870667, 'learning_rate': 0.00030078125, 'epoch': 0.01, 'num_input_tokens_seen': 80740352}\n{'loss': 7.2916, 'grad_norm': 0.3178255558013916, 'learning_rate': 0.0003046875, 'epoch': 0.01, 'num_input_tokens_seen': 81788928}\n{'loss': 7.2871, 'grad_norm': 0.5465154647827148, 'learning_rate': 0.00030859375, 'epoch': 0.01, 'num_input_tokens_seen': 82837504}\n{'loss': 7.262, 'grad_norm': 0.4718130826950073, 'learning_rate': 0.0003125, 'epoch': 0.01, 'num_input_tokens_seen': 83886080}\n{'loss': 7.2845, 'grad_norm': 0.5033366680145264, 'learning_rate': 0.00031640625, 'epoch': 0.01, 'num_input_tokens_seen': 84934656}\n{'loss': 7.2525, 'grad_norm': 0.5601146817207336, 'learning_rate': 0.0003203125, 'epoch': 0.01, 'num_input_tokens_seen': 85983232}\n{'loss': 7.1971, 'grad_norm': 0.5764456987380981, 'learning_rate': 0.00032421875, 'epoch': 0.01, 'num_input_tokens_seen': 87031808}\n{'loss': 7.1988, 'grad_norm': 0.6154745817184448, 'learning_rate': 0.000328125, 'epoch': 0.01, 'num_input_tokens_seen': 88080384}\n{'loss': 7.1987, 'grad_norm': 0.6701765656471252, 'learning_rate': 0.00033203125, 'epoch': 0.01, 'num_input_tokens_seen': 89128960}\n{'loss': 7.3324, 'grad_norm': 0.5648972988128662, 'learning_rate': 0.00033593750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 90177536}\n{'loss': 7.2233, 'grad_norm': 0.5782461166381836, 'learning_rate': 0.00033984375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 91226112}\n{'loss': 7.1995, 'grad_norm': 0.540762722492218, 'learning_rate': 0.00034375, 'epoch': 0.01, 'num_input_tokens_seen': 92274688}\n{'loss': 7.1214, 'grad_norm': 0.9524508118629456, 'learning_rate': 0.00034765625, 'epoch': 0.01, 'num_input_tokens_seen': 93323264}\n{'loss': 7.1603, 'grad_norm': 1.4820659160614014, 'learning_rate': 0.0003515625, 'epoch': 0.01, 'num_input_tokens_seen': 94371840}\n{'loss': 7.2364, 'grad_norm': 0.6124428510665894, 'learning_rate': 0.00035546875, 'epoch': 0.01, 'num_input_tokens_seen': 95420416}\n{'loss': 7.0258, 'grad_norm': 0.8897235989570618, 'learning_rate': 0.000359375, 'epoch': 0.01, 'num_input_tokens_seen': 96468992}\n{'loss': 7.1182, 'grad_norm': 0.9263321757316589, 'learning_rate': 0.00036328125, 'epoch': 0.01, 'num_input_tokens_seen': 97517568}\n{'loss': 7.109, 'grad_norm': 0.5800505876541138, 'learning_rate': 0.0003671875, 'epoch': 0.01, 'num_input_tokens_seen': 98566144}\n{'loss': 7.0449, 'grad_norm': 0.6776424050331116, 'learning_rate': 0.00037109375, 'epoch': 0.01, 'num_input_tokens_seen': 99614720}\n{'loss': 7.1272, 'grad_norm': 0.7616431713104248, 'learning_rate': 0.000375, 'epoch': 0.01, 'num_input_tokens_seen': 100663296}\n{'loss': 7.046, 'grad_norm': 0.5346249938011169, 'learning_rate': 0.00037890625, 'epoch': 0.01, 'num_input_tokens_seen': 101711872}\n{'loss': 7.0713, 'grad_norm': 0.6108944416046143, 'learning_rate': 0.0003828125, 'epoch': 0.01, 'num_input_tokens_seen': 102760448}\n{'loss': 7.1459, 'grad_norm': 0.4430749714374542, 'learning_rate': 0.00038671875, 'epoch': 0.01, 'num_input_tokens_seen': 103809024}\n{'loss': 7.0709, 'grad_norm': 0.6020255088806152, 'learning_rate': 0.000390625, 'epoch': 0.01, 'num_input_tokens_seen': 104857600}\n{'loss': 7.0144, 'grad_norm': 0.5525627732276917, 'learning_rate': 0.00039453125, 'epoch': 0.01, 'num_input_tokens_seen': 105906176}\n{'loss': 7.0926, 'grad_norm': 0.6909684538841248, 'learning_rate': 0.00039843750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 106954752}\n{'loss': 7.0289, 'grad_norm': 0.5576740503311157, 'learning_rate': 0.00040234375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 108003328}\n{'loss': 6.9173, 'grad_norm': 0.48874178528785706, 'learning_rate': 0.00040625000000000004, 'epoch': 0.01, 'num_input_tokens_seen': 109051904}\n{'loss': 6.9777, 'grad_norm': 0.3904782831668854, 'learning_rate': 0.00041015625, 'epoch': 0.01, 'num_input_tokens_seen': 110100480}\n{'loss': 6.9473, 'grad_norm': 0.3953755795955658, 'learning_rate': 0.0004140625, 'epoch': 0.01, 'num_input_tokens_seen': 111149056}\n{'loss': 6.9071, 'grad_norm': 0.43107134103775024, 'learning_rate': 0.00041796875, 'epoch': 0.01, 'num_input_tokens_seen': 112197632}\n{'loss': 6.9277, 'grad_norm': 0.33989447355270386, 'learning_rate': 0.000421875, 'epoch': 0.01, 'num_input_tokens_seen': 113246208}\n{'loss': 6.914, 'grad_norm': 0.3267095983028412, 'learning_rate': 0.00042578125, 'epoch': 0.01, 'num_input_tokens_seen': 114294784}\n{'loss': 6.6865, 'grad_norm': 0.4201946556568146, 'learning_rate': 0.0004296875, 'epoch': 0.01, 'num_input_tokens_seen': 115343360}\n{'loss': 6.8229, 'grad_norm': 0.345426082611084, 'learning_rate': 0.00043359375, 'epoch': 0.01, 'num_input_tokens_seen': 116391936}\n{'loss': 6.8599, 'grad_norm': 0.4104400873184204, 'learning_rate': 0.0004375, 'epoch': 0.01, 'num_input_tokens_seen': 117440512}\n{'loss': 6.7656, 'grad_norm': 0.6487549543380737, 'learning_rate': 0.00044140625, 'epoch': 0.01, 'num_input_tokens_seen': 118489088}\n{'loss': 6.8654, 'grad_norm': 1.5497283935546875, 'learning_rate': 0.0004453125, 'epoch': 0.01, 'num_input_tokens_seen': 119537664}\n{'loss': 6.8207, 'grad_norm': 1.9772824048995972, 'learning_rate': 0.00044921875, 'epoch': 0.01, 'num_input_tokens_seen': 120586240}\n{'loss': 6.7802, 'grad_norm': 0.9341455101966858, 'learning_rate': 0.000453125, 'epoch': 0.01, 'num_input_tokens_seen': 121634816}\n{'loss': 6.8017, 'grad_norm': 1.3528856039047241, 'learning_rate': 0.00045703125, 'epoch': 0.01, 'num_input_tokens_seen': 122683392}\n{'loss': 6.8344, 'grad_norm': 0.5852281451225281, 'learning_rate': 0.00046093750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 123731968}\n{'loss': 6.8259, 'grad_norm': 0.9776580929756165, 'learning_rate': 0.00046484375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 124780544}\n{'loss': 6.7581, 'grad_norm': 1.0398296117782593, 'learning_rate': 0.00046875, 'epoch': 0.01, 'num_input_tokens_seen': 125829120}\n{'loss': 6.7795, 'grad_norm': 1.1206268072128296, 'learning_rate': 0.00047265625, 'epoch': 0.01, 'num_input_tokens_seen': 126877696}\n{'loss': 6.5667, 'grad_norm': 0.6790318489074707, 'learning_rate': 0.0004765625, 'epoch': 0.01, 'num_input_tokens_seen': 127926272}\n{'loss': 6.7297, 'grad_norm': 1.2275055646896362, 'learning_rate': 0.00048046875, 'epoch': 0.02, 'num_input_tokens_seen': 128974848}\n{'loss': 6.7104, 'grad_norm': 1.1354466676712036, 'learning_rate': 0.000484375, 'epoch': 0.02, 'num_input_tokens_seen': 130023424}\n{'loss': 6.7025, 'grad_norm': 0.9035728573799133, 'learning_rate': 0.00048828125, 'epoch': 0.02, 'num_input_tokens_seen': 131072000}\n{'loss': 6.6391, 'grad_norm': 1.3942680358886719, 'learning_rate': 0.0004921875, 'epoch': 0.02, 'num_input_tokens_seen': 132120576}\n{'loss': 6.6011, 'grad_norm': 0.7435236573219299, 'learning_rate': 0.00049609375, 'epoch': 0.02, 'num_input_tokens_seen': 133169152}\n{'loss': 6.5135, 'grad_norm': 0.5970368385314941, 'learning_rate': 0.0005, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'eval_loss': 6.573822021484375, 'eval_runtime': 629.9441, 'eval_samples_per_second': 26.009, 'eval_steps_per_second': 0.203, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'loss': 6.5509, 'grad_norm': 0.7936264276504517, 'learning_rate': 0.00050390625, 'epoch': 0.02, 'num_input_tokens_seen': 135266304}\n{'loss': 6.6008, 'grad_norm': 0.6225885152816772, 'learning_rate': 0.0005078125, 'epoch': 0.02, 'num_input_tokens_seen': 136314880}\n{'loss': 6.4821, 'grad_norm': 0.5519376993179321, 'learning_rate': 0.00051171875, 'epoch': 0.02, 'num_input_tokens_seen': 137363456}\n{'loss': 6.3411, 'grad_norm': 0.5908603668212891, 'learning_rate': 0.000515625, 'epoch': 0.02, 'num_input_tokens_seen': 138412032}\n{'loss': 6.3464, 'grad_norm': 0.5101401209831238, 'learning_rate': 0.00051953125, 'epoch': 0.02, 'num_input_tokens_seen': 139460608}\n{'loss': 6.3638, 'grad_norm': 0.7352246046066284, 'learning_rate': 0.0005234375, 'epoch': 0.02, 'num_input_tokens_seen': 140509184}\n{'loss': 6.3429, 'grad_norm': 0.49651673436164856, 'learning_rate': 0.00052734375, 'epoch': 0.02, 'num_input_tokens_seen': 141557760}\n{'loss': 6.2987, 'grad_norm': 0.4835755527019501, 'learning_rate': 0.00053125, 'epoch': 0.02, 'num_input_tokens_seen': 142606336}\n{'loss': 6.2982, 'grad_norm': 0.5940163731575012, 'learning_rate': 0.00053515625, 'epoch': 0.02, 'num_input_tokens_seen': 143654912}\n{'loss': 6.267, 'grad_norm': 0.7658674120903015, 'learning_rate': 0.0005390625, 'epoch': 0.02, 'num_input_tokens_seen': 144703488}\n{'loss': 6.2102, 'grad_norm': 0.6704416275024414, 'learning_rate': 0.00054296875, 'epoch': 0.02, 'num_input_tokens_seen': 145752064}\n{'loss': 6.1956, 'grad_norm': 0.6615312099456787, 'learning_rate': 0.000546875, 'epoch': 0.02, 'num_input_tokens_seen': 146800640}\n{'loss': 6.286, 'grad_norm': 0.7957404255867004, 'learning_rate': 0.0005507812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 147849216}\n{'loss': 6.2483, 'grad_norm': 0.6477276682853699, 'learning_rate': 0.0005546875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 148897792}\n{'loss': 6.0944, 'grad_norm': 0.5753227472305298, 'learning_rate': 0.0005585937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 149946368}\n{'loss': 6.0995, 'grad_norm': 0.5871054530143738, 'learning_rate': 0.0005625000000000001, 'epoch': 0.02, 'num_input_tokens_seen': 150994944}\n{'loss': 6.112, 'grad_norm': 0.7046136856079102, 'learning_rate': 0.00056640625, 'epoch': 0.02, 'num_input_tokens_seen': 152043520}\n{'loss': 6.102, 'grad_norm': 0.9357424378395081, 'learning_rate': 0.0005703125, 'epoch': 0.02, 'num_input_tokens_seen': 153092096}\n{'loss': 6.1407, 'grad_norm': 1.0577837228775024, 'learning_rate': 0.00057421875, 'epoch': 0.02, 'num_input_tokens_seen': 154140672}\n{'loss': 5.9836, 'grad_norm': 0.7795257568359375, 'learning_rate': 0.000578125, 'epoch': 0.02, 'num_input_tokens_seen': 155189248}\n{'loss': 6.1041, 'grad_norm': 0.8117634057998657, 'learning_rate': 0.00058203125, 'epoch': 0.02, 'num_input_tokens_seen': 156237824}\n{'loss': 5.9474, 'grad_norm': 0.8311094045639038, 'learning_rate': 0.0005859375, 'epoch': 0.02, 'num_input_tokens_seen': 157286400}\n{'loss': 5.9365, 'grad_norm': 0.8269851803779602, 'learning_rate': 0.00058984375, 'epoch': 0.02, 'num_input_tokens_seen': 158334976}\n{'loss': 5.9668, 'grad_norm': 0.701510488986969, 'learning_rate': 0.00059375, 'epoch': 0.02, 'num_input_tokens_seen': 159383552}\n{'loss': 5.9874, 'grad_norm': 0.49938252568244934, 'learning_rate': 0.00059765625, 'epoch': 0.02, 'num_input_tokens_seen': 160432128}\n{'loss': 5.8505, 'grad_norm': 0.6981683969497681, 'learning_rate': 0.0006015625, 'epoch': 0.02, 'num_input_tokens_seen': 161480704}\n{'loss': 6.0156, 'grad_norm': 0.5023297071456909, 'learning_rate': 0.00060546875, 'epoch': 0.02, 'num_input_tokens_seen': 162529280}\n{'loss': 5.8299, 'grad_norm': 0.6075630187988281, 'learning_rate': 0.000609375, 'epoch': 0.02, 'num_input_tokens_seen': 163577856}\n{'loss': 5.8203, 'grad_norm': 0.6051607728004456, 'learning_rate': 0.00061328125, 'epoch': 0.02, 'num_input_tokens_seen': 164626432}\n{'loss': 5.7705, 'grad_norm': 0.6384783983230591, 'learning_rate': 0.0006171875, 'epoch': 0.02, 'num_input_tokens_seen': 165675008}\n{'loss': 5.791, 'grad_norm': 0.5084705948829651, 'learning_rate': 0.00062109375, 'epoch': 0.02, 'num_input_tokens_seen': 166723584}\n{'loss': 5.6743, 'grad_norm': 0.4278322160243988, 'learning_rate': 0.000625, 'epoch': 0.02, 'num_input_tokens_seen': 167772160}\n{'loss': 5.7112, 'grad_norm': 0.5151192545890808, 'learning_rate': 0.00062890625, 'epoch': 0.02, 'num_input_tokens_seen': 168820736}\n{'loss': 5.5128, 'grad_norm': 0.6542677283287048, 'learning_rate': 0.0006328125, 'epoch': 0.02, 'num_input_tokens_seen': 169869312}\n{'loss': 5.6735, 'grad_norm': 0.6016008257865906, 'learning_rate': 0.00063671875, 'epoch': 0.02, 'num_input_tokens_seen': 170917888}\n{'loss': 5.6525, 'grad_norm': 0.48695647716522217, 'learning_rate': 0.000640625, 'epoch': 0.02, 'num_input_tokens_seen': 171966464}\n{'loss': 5.6051, 'grad_norm': 0.5894989371299744, 'learning_rate': 0.00064453125, 'epoch': 0.02, 'num_input_tokens_seen': 173015040}\n{'loss': 5.6377, 'grad_norm': 0.7626883387565613, 'learning_rate': 0.0006484375, 'epoch': 0.02, 'num_input_tokens_seen': 174063616}\n{'loss': 5.6038, 'grad_norm': 0.745198130607605, 'learning_rate': 0.00065234375, 'epoch': 0.02, 'num_input_tokens_seen': 175112192}\n{'loss': 5.5465, 'grad_norm': 0.7876908779144287, 'learning_rate': 0.00065625, 'epoch': 0.02, 'num_input_tokens_seen': 176160768}\n{'loss': 5.5903, 'grad_norm': 0.7416785359382629, 'learning_rate': 0.00066015625, 'epoch': 0.02, 'num_input_tokens_seen': 177209344}\n{'loss': 5.4993, 'grad_norm': 0.4493878185749054, 'learning_rate': 0.0006640625, 'epoch': 0.02, 'num_input_tokens_seen': 178257920}\n{'loss': 5.5612, 'grad_norm': 0.5095419883728027, 'learning_rate': 0.00066796875, 'epoch': 0.02, 'num_input_tokens_seen': 179306496}\n{'loss': 5.378, 'grad_norm': 0.6330733895301819, 'learning_rate': 0.0006718750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 180355072}\n{'loss': 5.4875, 'grad_norm': 0.4710595905780792, 'learning_rate': 0.0006757812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 181403648}\n{'loss': 5.4221, 'grad_norm': 0.5276287198066711, 'learning_rate': 0.0006796875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 182452224}\n{'loss': 5.308, 'grad_norm': 0.6985499858856201, 'learning_rate': 0.0006835937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 183500800}\n{'loss': 5.4455, 'grad_norm': 0.4874110519886017, 'learning_rate': 0.0006875, 'epoch': 0.02, 'num_input_tokens_seen': 184549376}\n{'loss': 5.476, 'grad_norm': 0.5807638764381409, 'learning_rate': 0.00069140625, 'epoch': 0.02, 'num_input_tokens_seen': 185597952}\n{'loss': 5.2876, 'grad_norm': 0.5431288480758667, 'learning_rate': 0.0006953125, 'epoch': 0.02, 'num_input_tokens_seen': 186646528}\n{'loss': 5.3881, 'grad_norm': 0.7681945562362671, 'learning_rate': 0.00069921875, 'epoch': 0.02, 'num_input_tokens_seen': 187695104}\n{'loss': 5.4006, 'grad_norm': 0.7372023463249207, 'learning_rate': 0.000703125, 'epoch': 0.02, 'num_input_tokens_seen': 188743680}\n{'loss': 5.3813, 'grad_norm': 0.7354347109794617, 'learning_rate': 0.00070703125, 'epoch': 0.02, 'num_input_tokens_seen': 189792256}\n{'loss': 5.3393, 'grad_norm': 0.5908933281898499, 'learning_rate': 0.0007109375, 'epoch': 0.02, 'num_input_tokens_seen': 190840832}\n{'loss': 5.3024, 'grad_norm': 0.5665153861045837, 'learning_rate': 0.00071484375, 'epoch': 0.02, 'num_input_tokens_seen': 191889408}\n{'loss': 5.2782, 'grad_norm': 0.5930947661399841, 'learning_rate': 0.00071875, 'epoch': 0.02, 'num_input_tokens_seen': 192937984}\n{'loss': 5.3199, 'grad_norm': 0.5926457643508911, 'learning_rate': 0.00072265625, 'epoch': 0.02, 'num_input_tokens_seen': 193986560}\n{'loss': 5.2949, 'grad_norm': 0.548610270023346, 'learning_rate': 0.0007265625, 'epoch': 0.02, 'num_input_tokens_seen': 195035136}\n{'loss': 5.3143, 'grad_norm': 0.6023995280265808, 'learning_rate': 0.00073046875, 'epoch': 0.02, 'num_input_tokens_seen': 196083712}\n{'loss': 5.2982, 'grad_norm': 1.0335254669189453, 'learning_rate': 0.000734375, 'epoch': 0.02, 'num_input_tokens_seen': 197132288}\n{'loss': 5.2933, 'grad_norm': 1.2596269845962524, 'learning_rate': 0.00073828125, 'epoch': 0.02, 'num_input_tokens_seen': 198180864}\n{'loss': 5.2524, 'grad_norm': 0.6956535577774048, 'learning_rate': 0.0007421875, 'epoch': 0.02, 'num_input_tokens_seen': 199229440}\n{'loss': 5.3543, 'grad_norm': 0.946761429309845, 'learning_rate': 0.00074609375, 'epoch': 0.02, 'num_input_tokens_seen': 200278016}\n{'loss': 5.1616, 'grad_norm': 0.9568974375724792, 'learning_rate': 0.00075, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n[2025-03-10 18:01:06 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n[2025-03-10 18:01:06 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:30 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n[2025-03-10 18:02:30 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n[2025-03-10 18:02:44 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:04:45 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n[2025-03-10 18:04:45 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:05:26 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n[2025-03-10 18:05:26 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:06:39 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n[2025-03-10 18:06:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:07:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n[2025-03-10 18:07:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:23 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n[2025-03-10 18:09:23 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n[2025-03-10 18:09:44 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 5.276012420654297, 'eval_runtime': 754.8295, 'eval_samples_per_second': 21.706, 'eval_steps_per_second': 0.17, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n{'loss': 5.2363, 'grad_norm': 0.8435476422309875, 'learning_rate': 0.00075390625, 'epoch': 0.02, 'num_input_tokens_seen': 202375168}\n{'loss': 5.1035, 'grad_norm': 1.1267820596694946, 'learning_rate': 0.0007578125, 'epoch': 0.02, 'num_input_tokens_seen': 203423744}\n{'loss': 5.3017, 'grad_norm': 0.8555666208267212, 'learning_rate': 0.00076171875, 'epoch': 0.02, 'num_input_tokens_seen': 204472320}\n{'loss': 5.1679, 'grad_norm': 0.7608171105384827, 'learning_rate': 0.000765625, 'epoch': 0.02, 'num_input_tokens_seen': 205520896}\n{'loss': 5.2326, 'grad_norm': 0.6787221431732178, 'learning_rate': 0.00076953125, 'epoch': 0.02, 'num_input_tokens_seen': 206569472}\n{'loss': 5.144, 'grad_norm': 0.6404955983161926, 'learning_rate': 0.0007734375, 'epoch': 0.02, 'num_input_tokens_seen': 207618048}\n{'loss': 5.1933, 'grad_norm': 0.6099393367767334, 'learning_rate': 0.00077734375, 'epoch': 0.02, 'num_input_tokens_seen': 208666624}\n{'loss': 5.0498, 'grad_norm': 0.5971768498420715, 'learning_rate': 0.00078125, 'epoch': 0.02, 'num_input_tokens_seen': 209715200}\n{'loss': 5.1443, 'grad_norm': 0.642633318901062, 'learning_rate': 0.00078515625, 'epoch': 0.02, 'num_input_tokens_seen': 210763776}\n{'loss': 5.2125, 'grad_norm': 0.706398606300354, 'learning_rate': 0.0007890625, 'epoch': 0.02, 'num_input_tokens_seen': 211812352}\n{'loss': 5.1882, 'grad_norm': 0.817449688911438, 'learning_rate': 0.00079296875, 'epoch': 0.02, 'num_input_tokens_seen': 212860928}\n{'loss': 5.0905, 'grad_norm': 0.9392185807228088, 'learning_rate': 0.0007968750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 213909504}\n{'loss': 5.059, 'grad_norm': 0.5305852890014648, 'learning_rate': 0.0008007812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 214958080}\n{'loss': 5.0838, 'grad_norm': 0.7662672996520996, 'learning_rate': 0.0008046875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 216006656}\n{'loss': 5.0112, 'grad_norm': 0.5768160223960876, 'learning_rate': 0.0008085937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 217055232}\n{'loss': 4.9684, 'grad_norm': 0.5972586870193481, 'learning_rate': 0.0008125000000000001, 'epoch': 0.03, 'num_input_tokens_seen': 218103808}\n{'loss': 5.0764, 'grad_norm': 0.559498131275177, 'learning_rate': 0.00081640625, 'epoch': 0.03, 'num_input_tokens_seen': 219152384}\n{'loss': 5.0117, 'grad_norm': 0.555585503578186, 'learning_rate': 0.0008203125, 'epoch': 0.03, 'num_input_tokens_seen': 220200960}\n{'loss': 5.1955, 'grad_norm': 0.6180793046951294, 'learning_rate': 0.00082421875, 'epoch': 0.03, 'num_input_tokens_seen': 221249536}\n{'loss': 5.1265, 'grad_norm': 0.5784006118774414, 'learning_rate': 0.000828125, 'epoch': 0.03, 'num_input_tokens_seen': 222298112}\n{'loss': 5.03, 'grad_norm': 0.5200456380844116, 'learning_rate': 0.00083203125, 'epoch': 0.03, 'num_input_tokens_seen': 223346688}\n{'loss': 5.051, 'grad_norm': 0.5112505555152893, 'learning_rate': 0.0008359375, 'epoch': 0.03, 'num_input_tokens_seen': 224395264}\n{'loss': 5.0994, 'grad_norm': 0.44979697465896606, 'learning_rate': 0.00083984375, 'epoch': 0.03, 'num_input_tokens_seen': 225443840}\n{'loss': 4.94, 'grad_norm': 0.46642380952835083, 'learning_rate': 0.00084375, 'epoch': 0.03, 'num_input_tokens_seen': 226492416}\n{'loss': 5.0562, 'grad_norm': 0.49667519330978394, 'learning_rate': 0.00084765625, 'epoch': 0.03, 'num_input_tokens_seen': 227540992}\n{'loss': 4.9217, 'grad_norm': 0.4302496314048767, 'learning_rate': 0.0008515625, 'epoch': 0.03, 'num_input_tokens_seen': 228589568}\n{'loss': 4.8588, 'grad_norm': 0.5326887369155884, 'learning_rate': 0.00085546875, 'epoch': 0.03, 'num_input_tokens_seen': 229638144}\n{'loss': 4.8501, 'grad_norm': 0.45604026317596436, 'learning_rate': 0.000859375, 'epoch': 0.03, 'num_input_tokens_seen': 230686720}\n{'loss': 4.8774, 'grad_norm': 0.4497997462749481, 'learning_rate': 0.00086328125, 'epoch': 0.03, 'num_input_tokens_seen': 231735296}\n{'loss': 5.0143, 'grad_norm': 0.526670515537262, 'learning_rate': 0.0008671875, 'epoch': 0.03, 'num_input_tokens_seen': 232783872}\n{'loss': 4.9512, 'grad_norm': 0.5823948979377747, 'learning_rate': 0.00087109375, 'epoch': 0.03, 'num_input_tokens_seen': 233832448}\n{'loss': 4.915, 'grad_norm': 0.6516634821891785, 'learning_rate': 0.000875, 'epoch': 0.03, 'num_input_tokens_seen': 234881024}\n{'loss': 4.9318, 'grad_norm': 0.7564677596092224, 'learning_rate': 0.00087890625, 'epoch': 0.03, 'num_input_tokens_seen': 235929600}\n{'loss': 4.9041, 'grad_norm': 0.7170491814613342, 'learning_rate': 0.0008828125, 'epoch': 0.03, 'num_input_tokens_seen': 236978176}\n{'loss': 4.9727, 'grad_norm': 0.7671059966087341, 'learning_rate': 0.00088671875, 'epoch': 0.03, 'num_input_tokens_seen': 238026752}\n{'loss': 4.7895, 'grad_norm': 0.8752806782722473, 'learning_rate': 0.000890625, 'epoch': 0.03, 'num_input_tokens_seen': 239075328}\n{'loss': 4.8845, 'grad_norm': 0.8313667178153992, 'learning_rate': 0.00089453125, 'epoch': 0.03, 'num_input_tokens_seen': 240123904}\n{'loss': 4.8325, 'grad_norm': 0.9223323464393616, 'learning_rate': 0.0008984375, 'epoch': 0.03, 'num_input_tokens_seen': 241172480}\n{'loss': 4.8991, 'grad_norm': 0.7362072467803955, 'learning_rate': 0.00090234375, 'epoch': 0.03, 'num_input_tokens_seen': 242221056}\n{'loss': 4.7443, 'grad_norm': 0.6667400598526001, 'learning_rate': 0.00090625, 'epoch': 0.03, 'num_input_tokens_seen': 243269632}\n{'loss': 4.8913, 'grad_norm': 0.5431771874427795, 'learning_rate': 0.00091015625, 'epoch': 0.03, 'num_input_tokens_seen': 244318208}\n{'loss': 4.8997, 'grad_norm': 0.5542160272598267, 'learning_rate': 0.0009140625, 'epoch': 0.03, 'num_input_tokens_seen': 245366784}\n{'loss': 4.8448, 'grad_norm': 0.6110911965370178, 'learning_rate': 0.0009179687500000001, 'epoch': 0.03, 'num_input_tokens_seen': 246415360}\n{'loss': 4.7975, 'grad_norm': 0.5550041794776917, 'learning_rate': 0.0009218750000000001, 'epoch': 0.03, 'num_input_tokens_seen': 247463936}\n{'loss': 4.87, 'grad_norm': 0.4778221547603607, 'learning_rate': 0.0009257812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 248512512}\n{'loss': 4.7594, 'grad_norm': 0.35899603366851807, 'learning_rate': 0.0009296875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 249561088}\n{'loss': 4.8338, 'grad_norm': 0.494094580411911, 'learning_rate': 0.0009335937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 250609664}\n{'loss': 4.7424, 'grad_norm': 0.4671477675437927, 'learning_rate': 0.0009375, 'epoch': 0.03, 'num_input_tokens_seen': 251658240}\n{'loss': 4.7593, 'grad_norm': 0.4691649079322815, 'learning_rate': 0.00094140625, 'epoch': 0.03, 'num_input_tokens_seen': 252706816}\n{'loss': 4.7869, 'grad_norm': 0.6212939023971558, 'learning_rate': 0.0009453125, 'epoch': 0.03, 'num_input_tokens_seen': 253755392}\n{'loss': 4.7925, 'grad_norm': 0.621306300163269, 'learning_rate': 0.00094921875, 'epoch': 0.03, 'num_input_tokens_seen': 254803968}\n{'loss': 4.7714, 'grad_norm': 0.6991429328918457, 'learning_rate': 0.000953125, 'epoch': 0.03, 'num_input_tokens_seen': 255852544}\n{'loss': 5.2726, 'grad_norm': 1.016664743423462, 'learning_rate': 0.00095703125, 'epoch': 0.03, 'num_input_tokens_seen': 256901120}\n{'loss': 4.9125, 'grad_norm': 1.3091747760772705, 'learning_rate': 0.0009609375, 'epoch': 0.03, 'num_input_tokens_seen': 257949696}\n{'loss': 4.839, 'grad_norm': 1.2617076635360718, 'learning_rate': 0.00096484375, 'epoch': 0.03, 'num_input_tokens_seen': 258998272}\n{'loss': 4.8412, 'grad_norm': 0.9403041005134583, 'learning_rate': 0.00096875, 'epoch': 0.03, 'num_input_tokens_seen': 260046848}\n{'loss': 5.0193, 'grad_norm': 0.9802642464637756, 'learning_rate': 0.00097265625, 'epoch': 0.03, 'num_input_tokens_seen': 261095424}\n{'loss': 4.7372, 'grad_norm': 0.9636861085891724, 'learning_rate': 0.0009765625, 'epoch': 0.03, 'num_input_tokens_seen': 262144000}\n{'loss': 4.7878, 'grad_norm': 0.7803710699081421, 'learning_rate': 0.00098046875, 'epoch': 0.03, 'num_input_tokens_seen': 263192576}\n{'loss': 4.8126, 'grad_norm': 0.7087182402610779, 'learning_rate': 0.000984375, 'epoch': 0.03, 'num_input_tokens_seen': 264241152}\n{'loss': 4.7252, 'grad_norm': 0.7220279574394226, 'learning_rate': 0.00098828125, 'epoch': 0.03, 'num_input_tokens_seen': 265289728}\n{'loss': 4.7419, 'grad_norm': 0.6956494450569153, 'learning_rate': 0.0009921875, 'epoch': 0.03, 'num_input_tokens_seen': 266338304}\n{'loss': 4.8041, 'grad_norm': 0.8009976148605347, 'learning_rate': 0.00099609375, 'epoch': 0.03, 'num_input_tokens_seen': 267386880}\n{'loss': 4.7016, 'grad_norm': 0.6665300130844116, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'eval_loss': 4.753816604614258, 'eval_runtime': 661.8529, 'eval_samples_per_second': 24.755, 'eval_steps_per_second': 0.193, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'loss': 4.6762, 'grad_norm': 0.5311985611915588, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 269484032}\n{'loss': 4.6296, 'grad_norm': 0.5160760879516602, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 270532608}\n{'loss': 4.7422, 'grad_norm': 0.5964047312736511, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 271581184}\n{'loss': 4.7396, 'grad_norm': 0.4793979227542877, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 272629760}\n{'loss': 4.733, 'grad_norm': 0.5280688405036926, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 273678336}\n{'loss': 4.9591, 'grad_norm': 0.8669152855873108, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 274726912}\n{'loss': 4.7953, 'grad_norm': 0.8417720198631287, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 275775488}\n{'loss': 4.7972, 'grad_norm': 0.9349585175514221, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 276824064}\n{'loss': 4.7233, 'grad_norm': 0.8441230654716492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 277872640}\n{'loss': 4.8032, 'grad_norm': 0.7163352370262146, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 278921216}\n{'loss': 4.4369, 'grad_norm': 1.0364480018615723, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 279969792}\n{'loss': 4.557, 'grad_norm': 1.012042760848999, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 281018368}\n{'loss': 4.7696, 'grad_norm': 1.1818541288375854, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 282066944}\n{'loss': 4.7835, 'grad_norm': 0.8296499848365784, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 283115520}\n{'loss': 4.761, 'grad_norm': 0.6920194625854492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 284164096}\n{'loss': 4.6239, 'grad_norm': 0.8495435118675232, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 285212672}\n{'loss': 4.6914, 'grad_norm': 0.6536931991577148, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 286261248}\n{'loss': 4.776, 'grad_norm': 0.7161967754364014, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 287309824}\n{'loss': 4.7096, 'grad_norm': 0.5441194176673889, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 288358400}\n{'loss': 4.7278, 'grad_norm': 0.5437328219413757, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 289406976}\n{'loss': 4.6126, 'grad_norm': 0.49404028058052063, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 290455552}\n{'loss': 4.6594, 'grad_norm': 0.4274217188358307, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 291504128}\n{'loss': 4.6365, 'grad_norm': 0.48871853947639465, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 292552704}\n{'loss': 4.5999, 'grad_norm': 0.5101707577705383, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 293601280}\n{'loss': 4.5869, 'grad_norm': 0.4579870104789734, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 294649856}\n{'loss': 4.5993, 'grad_norm': 0.44694098830223083, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 295698432}\n{'loss': 4.6369, 'grad_norm': 0.42955130338668823, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 296747008}\n{'loss': 4.5973, 'grad_norm': 0.532283365726471, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 297795584}\n{'loss': 4.3953, 'grad_norm': 0.5553389191627502, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 298844160}\n{'loss': 4.5501, 'grad_norm': 0.4733176529407501, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 299892736}\n{'loss': 4.4896, 'grad_norm': 0.5510519742965698, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 300941312}\n{'loss': 4.348, 'grad_norm': 0.5312983393669128, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 301989888}\n{'loss': 4.4, 'grad_norm': 0.4173823297023773, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 303038464}\n{'loss': 4.4971, 'grad_norm': 0.4799824357032776, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 304087040}\n{'loss': 4.5507, 'grad_norm': 0.4494017958641052, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 305135616}\n{'loss': 4.5655, 'grad_norm': 0.36501485109329224, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 306184192}\n{'loss': 4.5189, 'grad_norm': 0.4833853840827942, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 307232768}\n{'loss': 4.5387, 'grad_norm': 0.5214531421661377, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 308281344}\n{'loss': 4.5509, 'grad_norm': 0.5383253693580627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 309329920}\n{'loss': 4.4112, 'grad_norm': 0.5364778637886047, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 310378496}\n{'loss': 4.568, 'grad_norm': 0.3624066114425659, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 311427072}\n{'loss': 4.5289, 'grad_norm': 0.5469081401824951, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 312475648}\n{'loss': 4.4953, 'grad_norm': 0.5212593674659729, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 313524224}\n{'loss': 4.4614, 'grad_norm': 0.36742305755615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 314572800}\n{'loss': 4.4757, 'grad_norm': 0.43591663241386414, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 315621376}\n{'loss': 4.5321, 'grad_norm': 0.483548104763031, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 316669952}\n{'loss': 4.449, 'grad_norm': 0.3971082866191864, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 317718528}\n{'loss': 4.4539, 'grad_norm': 0.3416251540184021, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 318767104}\n{'loss': 4.3456, 'grad_norm': 0.45731472969055176, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 319815680}\n{'loss': 4.4179, 'grad_norm': 0.4462226331233978, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 320864256}\n{'loss': 4.3691, 'grad_norm': 0.3393065631389618, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 321912832}\n{'loss': 4.4361, 'grad_norm': 0.39659640192985535, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 322961408}\n{'loss': 4.4166, 'grad_norm': 0.42212849855422974, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 324009984}\n{'loss': 4.3931, 'grad_norm': 0.3403238356113434, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 325058560}\n{'loss': 4.3003, 'grad_norm': 0.3405858278274536, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 326107136}\n{'loss': 4.4339, 'grad_norm': 0.42516669631004333, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 327155712}\n{'loss': 4.4258, 'grad_norm': 0.4387160539627075, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 328204288}\n{'loss': 4.3774, 'grad_norm': 0.3546140193939209, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 329252864}\n{'loss': 4.3261, 'grad_norm': 0.3842155933380127, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 330301440}\n{'loss': 4.2843, 'grad_norm': 0.32807183265686035, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 331350016}\n{'loss': 4.3627, 'grad_norm': 0.3635430932044983, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 332398592}\n{'loss': 4.3304, 'grad_norm': 0.32113364338874817, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 333447168}\n{'loss': 4.258, 'grad_norm': 0.3261938989162445, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 334495744}\n{'loss': 4.392, 'grad_norm': 0.35287028551101685, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'eval_loss': 4.340233325958252, 'eval_runtime': 641.4064, 'eval_samples_per_second': 25.544, 'eval_steps_per_second': 0.2, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'loss': 4.4095, 'grad_norm': 0.30875736474990845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 336592896}\n{'loss': 3.8896, 'grad_norm': 0.6334038972854614, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 337641472}\n{'loss': 4.449, 'grad_norm': 0.5519331693649292, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 338690048}\n{'loss': 4.4388, 'grad_norm': 0.4262654185295105, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 339738624}\n{'loss': 4.3918, 'grad_norm': 0.4348645508289337, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 340787200}\n{'loss': 4.3677, 'grad_norm': 0.3858915865421295, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 341835776}\n{'loss': 4.3343, 'grad_norm': 0.4542510509490967, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 342884352}\n{'loss': 4.3196, 'grad_norm': 0.4413583278656006, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 343932928}\n{'loss': 4.322, 'grad_norm': 0.5200892686843872, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 344981504}\n{'loss': 4.2409, 'grad_norm': 0.4969848692417145, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 346030080}\n{'loss': 4.2263, 'grad_norm': 0.43436068296432495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 347078656}\n{'loss': 4.2271, 'grad_norm': 0.4760046899318695, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 348127232}\n{'loss': 4.3567, 'grad_norm': 0.43881112337112427, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 349175808}\n{'loss': 4.2606, 'grad_norm': 0.5361112952232361, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 350224384}\n{'loss': 4.3831, 'grad_norm': 0.5959597229957581, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 351272960}\n{'loss': 4.2899, 'grad_norm': 0.6709368824958801, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 352321536}\n{'loss': 4.2263, 'grad_norm': 0.6585149168968201, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 353370112}\n{'loss': 4.3428, 'grad_norm': 0.5447191596031189, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 354418688}\n{'loss': 4.3642, 'grad_norm': 0.576545238494873, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 355467264}\n{'loss': 4.025, 'grad_norm': 0.7567218542098999, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 356515840}\n{'loss': 4.2593, 'grad_norm': 0.6053742170333862, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 357564416}\n{'loss': 4.2864, 'grad_norm': 0.54949551820755, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 358612992}\n{'loss': 4.3183, 'grad_norm': 0.4792100489139557, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 359661568}\n{'loss': 4.2957, 'grad_norm': 0.4366244077682495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 360710144}\n{'loss': 4.3502, 'grad_norm': 0.5610309839248657, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 361758720}\n{'loss': 4.2673, 'grad_norm': 0.42132946848869324, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 362807296}\n{'loss': 4.2565, 'grad_norm': 0.45927727222442627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 363855872}\n{'loss': 4.3009, 'grad_norm': 0.40793168544769287, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 364904448}\n{'loss': 4.2584, 'grad_norm': 0.3818293511867523, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 365953024}\n{'loss': 4.3187, 'grad_norm': 0.4942944645881653, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 367001600}\n{'loss': 4.2056, 'grad_norm': 0.5316190719604492, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 368050176}\n{'loss': 4.2403, 'grad_norm': 0.4738222658634186, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 369098752}\n{'loss': 4.244, 'grad_norm': 0.41153445839881897, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 370147328}\n{'loss': 4.2876, 'grad_norm': 0.35864201188087463, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 371195904}\n{'loss': 4.2457, 'grad_norm': 0.4317127466201782, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 372244480}\n{'loss': 4.2138, 'grad_norm': 0.4922076165676117, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 373293056}\n{'loss': 4.1875, 'grad_norm': 0.5150508880615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 374341632}\n{'loss': 4.1485, 'grad_norm': 0.40701162815093994, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 375390208}\n{'loss': 4.1062, 'grad_norm': 0.40378910303115845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 376438784}\n{'loss': 4.226, 'grad_norm': 0.4435281753540039, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 377487360}\n{'loss': 4.2034, 'grad_norm': 0.37908127903938293, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 378535936}\n{'loss': 4.1502, 'grad_norm': 0.408202588558197, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 379584512}\n{'loss': 4.1623, 'grad_norm': 0.4542413651943207, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 380633088}\n{'loss': 4.206, 'grad_norm': 0.5084658861160278, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 381681664}\n{'loss': 4.1867, 'grad_norm': 0.432908833026886, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 382730240}\n{'loss': 4.2377, 'grad_norm': 0.38273656368255615, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 383778816}\n{'loss': 4.1443, 'grad_norm': 0.39886555075645447, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 384827392}\n{'loss': 4.16, 'grad_norm': 0.4073260724544525, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 385875968}\n{'loss': 4.0871, 'grad_norm': 0.46062660217285156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 386924544}\n{'loss': 4.1655, 'grad_norm': 0.3555128574371338, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 387973120}\n{'loss': 4.1993, 'grad_norm': 0.35318323969841003, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 389021696}\n{'loss': 4.0745, 'grad_norm': 0.3469637632369995, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 390070272}\n{'loss': 4.1844, 'grad_norm': 0.3650517761707306, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 391118848}\n{'loss': 4.1744, 'grad_norm': 0.4310692846775055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 392167424}\n{'loss': 4.1896, 'grad_norm': 0.465585857629776, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 393216000}\n{'loss': 4.0568, 'grad_norm': 0.5539769530296326, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 394264576}\n{'loss': 4.2642, 'grad_norm': 0.5437971949577332, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 395313152}\n{'loss': 4.1705, 'grad_norm': 0.6534202694892883, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 396361728}\n{'loss': 3.9844, 'grad_norm': 0.7271204590797424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 397410304}\n{'loss': 4.105, 'grad_norm': 0.7395262122154236, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 398458880}\n{'loss': 4.2332, 'grad_norm': 0.9734097719192505, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 399507456}\n{'loss': 4.1501, 'grad_norm': 1.1519765853881836, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 400556032}\n{'loss': 4.0756, 'grad_norm': 0.7837873697280884, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 401604608}\n{'loss': 4.013, 'grad_norm': 0.8097010850906372, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'eval_loss': 4.120734214782715, 'eval_runtime': 626.8806, 'eval_samples_per_second': 26.136, 'eval_steps_per_second': 0.204, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'loss': 4.0955, 'grad_norm': 0.6811020970344543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 403701760}\n{'loss': 4.0917, 'grad_norm': 0.5382081270217896, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 404750336}\n{'loss': 4.0414, 'grad_norm': 0.4250117242336273, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 405798912}\n{'loss': 4.1051, 'grad_norm': 0.4233124256134033, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 406847488}\n{'loss': 4.1475, 'grad_norm': 0.41960859298706055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 407896064}\n{'loss': 4.0322, 'grad_norm': 0.4991297423839569, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 408944640}\n{'loss': 4.0664, 'grad_norm': 0.43890711665153503, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 409993216}\n{'loss': 4.1126, 'grad_norm': 0.38538315892219543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 411041792}\n{'loss': 4.0591, 'grad_norm': 0.41170960664749146, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 412090368}\n{'loss': 4.1145, 'grad_norm': 0.42465972900390625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 413138944}\n{'loss': 4.0393, 'grad_norm': 0.4215935468673706, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 414187520}\n{'loss': 3.9509, 'grad_norm': 0.5031537413597107, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 415236096}\n{'loss': 3.9314, 'grad_norm': 0.5212794542312622, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 416284672}\n{'loss': 4.062, 'grad_norm': 0.5779813528060913, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 417333248}\n{'loss': 4.0264, 'grad_norm': 0.5523960590362549, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 418381824}\n{'loss': 4.0366, 'grad_norm': 0.501869797706604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 419430400}\n{'loss': 4.016, 'grad_norm': 0.390077143907547, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 420478976}\n{'loss': 3.9438, 'grad_norm': 0.39393457770347595, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 421527552}\n{'loss': 3.9882, 'grad_norm': 0.3395244777202606, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 422576128}\n{'loss': 3.95, 'grad_norm': 0.3985426425933838, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 423624704}\n{'loss': 3.9708, 'grad_norm': 0.4353885352611542, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 424673280}\n{'loss': 3.9959, 'grad_norm': 0.39546582102775574, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 425721856}\n{'loss': 3.9475, 'grad_norm': 0.3725046217441559, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 426770432}\n{'loss': 3.8599, 'grad_norm': 0.5391167998313904, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 427819008}\n{'loss': 3.9765, 'grad_norm': 0.5383077263832092, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 428867584}\n{'loss': 3.8999, 'grad_norm': 0.4455236494541168, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 429916160}\n{'loss': 4.0357, 'grad_norm': 0.4489726722240448, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 430964736}\n{'loss': 3.992, 'grad_norm': 0.45914894342422485, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 432013312}\n{'loss': 3.9556, 'grad_norm': 0.5718650817871094, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 433061888}\n{'loss': 3.9797, 'grad_norm': 0.5529163479804993, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 434110464}\n{'loss': 3.9479, 'grad_norm': 0.4689369201660156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 435159040}\n{'loss': 3.9358, 'grad_norm': 0.448303759098053, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 436207616}\n{'loss': 3.9699, 'grad_norm': 0.4203392565250397, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 437256192}\n{'loss': 3.8173, 'grad_norm': 0.4046834707260132, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 438304768}\n{'loss': 3.8183, 'grad_norm': 0.3998134136199951, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 439353344}\n{'loss': 3.8477, 'grad_norm': 0.4120945632457733, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 440401920}\n{'loss': 3.8486, 'grad_norm': 0.39726078510284424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 441450496}\n{'loss': 3.942, 'grad_norm': 0.399142861366272, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 442499072}\n{'loss': 3.9038, 'grad_norm': 0.41262856125831604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 443547648}\n{'loss': 3.8447, 'grad_norm': 0.4645870327949524, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 444596224}\n{'loss': 3.9215, 'grad_norm': 0.49330976605415344, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 445644800}\n{'loss': 4.5329, 'grad_norm': 4.813076972961426, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 446693376}\n{'loss': 3.763, 'grad_norm': 1.0100675821304321, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 447741952}\n{'loss': 3.9888, 'grad_norm': 1.2422761917114258, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 448790528}\n{'loss': 3.9209, 'grad_norm': 1.1251254081726074, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 449839104}\n{'loss': 4.1438, 'grad_norm': 1.926529049873352, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 450887680}\n{'loss': 4.0952, 'grad_norm': 1.2948275804519653, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 451936256}\n{'loss': 3.9411, 'grad_norm': 1.1000643968582153, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 452984832}\n{'loss': 3.988, 'grad_norm': 1.3160468339920044, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 454033408}\n{'loss': 4.0241, 'grad_norm': 1.0201517343521118, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 455081984}\n{'loss': 3.9875, 'grad_norm': 0.9689710140228271, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 456130560}\n{'loss': 3.8684, 'grad_norm': 1.045577049255371, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 457179136}\n{'loss': 3.865, 'grad_norm': 0.931566059589386, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 458227712}\n{'loss': 3.728, 'grad_norm': 0.945274293422699, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 459276288}\n{'loss': 3.955, 'grad_norm': 0.7679930925369263, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 460324864}\n{'loss': 4.4113, 'grad_norm': 0.889451801776886, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 461373440}\n{'loss': 3.8928, 'grad_norm': 0.9069199562072754, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 462422016}\n{'loss': 3.9624, 'grad_norm': 0.8945743441581726, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 463470592}\n{'loss': 3.9698, 'grad_norm': 0.7373656630516052, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 464519168}\n{'loss': 3.921, 'grad_norm': 0.6688440442085266, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 465567744}\n{'loss': 3.8908, 'grad_norm': 0.5442579984664917, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 466616320}\n{'loss': 3.9138, 'grad_norm': 0.5583804845809937, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 467664896}\n{'loss': 3.8731, 'grad_norm': 0.504666268825531, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 468713472}\n{'loss': 3.7961, 'grad_norm': 0.4965992867946625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'eval_loss': 3.7728981971740723, 'eval_runtime': 616.374, 'eval_samples_per_second': 26.581, 'eval_steps_per_second': 0.208, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'loss': 3.8829, 'grad_norm': 0.44414225220680237, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 470810624}\n{'loss': 3.6939, 'grad_norm': 0.5276159644126892, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 471859200}\n{'loss': 3.8173, 'grad_norm': 0.4666613042354584, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 472907776}\n{'loss': 3.6884, 'grad_norm': 0.4581243097782135, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 473956352}\n{'loss': 3.789, 'grad_norm': 0.4697781205177307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 475004928}\n{'loss': 3.8791, 'grad_norm': 0.5336131453514099, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 476053504}\n{'loss': 3.8077, 'grad_norm': 0.5709654092788696, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 477102080}\n{'loss': 3.8421, 'grad_norm': 0.5592761039733887, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 478150656}\n{'loss': 3.8135, 'grad_norm': 0.4490680694580078, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 479199232}\n{'loss': 3.7535, 'grad_norm': 0.3931736648082733, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 480247808}\n{'loss': 3.7885, 'grad_norm': 0.41578060388565063, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 481296384}\n{'loss': 3.6255, 'grad_norm': 0.429817795753479, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 482344960}\n{'loss': 3.7202, 'grad_norm': 0.49616578221321106, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 483393536}\n 9%|▊ | 704/8192 [9:33:48<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n 9%|▊ | 704/8192 [9:44:58<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:28:20<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n 10%|█ | 832/8192 [11:41:00<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:24:54<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n 11%|█ | 896/8192 [12:33:14<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█▏ | 922/8192 [12:52:49<76:09:46, 37.71s/it]'(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n 11%|█▏ | 922/8192 [12:52:59<76:09:46, 37.71s/it]Retrying in 1s [Retry 1/5].\n 12%|█▏ | 943/8192 [13:06:07<76:15:57, 37.88s/it]\n{'loss': 3.7796, 'grad_norm': 0.4774172008037567, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 484442112}\n{'loss': 3.7779, 'grad_norm': 0.45830512046813965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 485490688}\n{'loss': 3.6516, 'grad_norm': 0.4130597710609436, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 486539264}\n{'loss': 3.7018, 'grad_norm': 0.3804127275943756, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 487587840}\n{'loss': 3.6893, 'grad_norm': 0.36560356616973877, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 488636416}\n{'loss': 3.6362, 'grad_norm': 0.3827981948852539, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 489684992}\n{'loss': 3.5987, 'grad_norm': 0.37492236495018005, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 490733568}\n{'loss': 3.7165, 'grad_norm': 0.46995237469673157, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 491782144}\n{'loss': 3.6097, 'grad_norm': 0.4908960461616516, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 492830720}\n{'loss': 3.6035, 'grad_norm': 0.5318525433540344, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 493879296}\n{'loss': 3.6643, 'grad_norm': 0.4848596453666687, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 494927872}\n{'loss': 3.6586, 'grad_norm': 0.4421922266483307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 495976448}\n{'loss': 3.5902, 'grad_norm': 0.4107126295566559, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 497025024}\n{'loss': 3.6937, 'grad_norm': 0.3975088894367218, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 498073600}\n{'loss': 3.6496, 'grad_norm': 0.4559416174888611, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 499122176}\n{'loss': 3.66, 'grad_norm': 0.41401296854019165, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 500170752}\n{'loss': 3.5551, 'grad_norm': 0.45235902070999146, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 501219328}\n{'loss': 3.4794, 'grad_norm': 0.427593857049942, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 502267904}\n{'loss': 3.5345, 'grad_norm': 0.4024144411087036, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 503316480}\n{'loss': 3.5784, 'grad_norm': 0.410284161567688, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 504365056}\n{'loss': 3.6177, 'grad_norm': 0.37683290243148804, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 505413632}\n{'loss': 3.5883, 'grad_norm': 0.417323499917984, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 506462208}\n{'loss': 3.5888, 'grad_norm': 0.4327872693538666, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 507510784}\n{'loss': 3.5891, 'grad_norm': 0.5366392731666565, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 508559360}\n{'loss': 3.3725, 'grad_norm': 0.45735156536102295, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 509607936}\n{'loss': 3.5674, 'grad_norm': 0.4255360960960388, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 510656512}\n{'loss': 3.3523, 'grad_norm': 0.6517689824104309, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 511705088}\n{'loss': 3.5901, 'grad_norm': 0.5713740587234497, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 512753664}\n{'loss': 3.542, 'grad_norm': 0.5570502281188965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 513802240}\n{'loss': 3.4246, 'grad_norm': 0.6477808356285095, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 514850816}\n{'loss': 3.4954, 'grad_norm': 0.5195346474647522, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 515899392}\n{'loss': 3.6516, 'grad_norm': 0.5446246862411499, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 516947968}\n{'loss': 3.5955, 'grad_norm': 0.5475099086761475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 517996544}\n{'loss': 3.5516, 'grad_norm': 0.4719395041465759, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 519045120}\n{'loss': 3.5439, 'grad_norm': 0.43647533655166626, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 520093696}\n{'loss': 3.579, 'grad_norm': 0.5048384070396423, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 521142272}\n{'loss': 3.4742, 'grad_norm': 0.4902295172214508, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 522190848}\n{'loss': 3.4363, 'grad_norm': 0.525496244430542, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 523239424}\n{'loss': 3.3658, 'grad_norm': 0.5224571824073792, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 524288000}\n{'loss': 3.4816, 'grad_norm': 0.45781856775283813, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 525336576}\n{'loss': 3.4612, 'grad_norm': 0.3764704763889313, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 526385152}\n{'loss': 3.5172, 'grad_norm': 0.3994409143924713, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 527433728}\n{'loss': 3.5462, 'grad_norm': 0.45144984126091003, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 528482304}\n{'loss': 3.5079, 'grad_norm': 0.4901409149169922, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 529530880}\n{'loss': 3.5187, 'grad_norm': 0.45689818263053894, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 530579456}\n{'loss': 3.4408, 'grad_norm': 0.4650699198246002, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 531628032}\n{'loss': 3.4019, 'grad_norm': 0.40419647097587585, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 532676608}\n{'loss': 3.5255, 'grad_norm': 0.3895981013774872, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 533725184}\n{'loss': 3.312, 'grad_norm': 0.46533191204071045, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 534773760}\n{'loss': 3.4233, 'grad_norm': 0.5021492838859558, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 535822336}\n{'loss': 3.4211, 'grad_norm': 0.6763796806335449, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'eval_loss': 3.38647198677063, 'eval_runtime': 681.5531, 'eval_samples_per_second': 24.039, 'eval_steps_per_second': 0.188, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'loss': 3.2825, 'grad_norm': 0.75739586353302, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 537919488}\n{'loss': 3.4758, 'grad_norm': 0.49962809681892395, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 538968064}\n{'loss': 3.4105, 'grad_norm': 0.47640085220336914, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 540016640}\n{'loss': 3.4393, 'grad_norm': 0.4722411632537842, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 541065216}\n{'loss': 3.4254, 'grad_norm': 0.4715781807899475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 542113792}\n{'loss': 3.3992, 'grad_norm': 0.474001407623291, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 543162368}\n{'loss': 3.4274, 'grad_norm': 0.48976385593414307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 544210944}\n{'loss': 3.3255, 'grad_norm': 0.4819697141647339, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 545259520}\n{'loss': 3.3679, 'grad_norm': 0.37490880489349365, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 546308096}\n{'loss': 3.377, 'grad_norm': 0.4356544315814972, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 547356672}\n{'loss': 3.4294, 'grad_norm': 0.3786229193210602, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 548405248}\n{'loss': 3.2323, 'grad_norm': 0.4364008605480194, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 549453824}\n{'loss': 3.4615, 'grad_norm': 0.39242950081825256, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 550502400}\n{'loss': 3.3589, 'grad_norm': 0.4270903766155243, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 551550976}\n{'loss': 3.4366, 'grad_norm': 0.4204763174057007, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 552599552}\n{'loss': 3.3859, 'grad_norm': 0.554025411605835, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 553648128}\n{'loss': 3.2353, 'grad_norm': 0.5719075798988342, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 554696704}\n{'loss': 3.3798, 'grad_norm': 0.4803822338581085, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 555745280}\n{'loss': 3.1191, 'grad_norm': 0.5494056344032288, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 556793856}\n{'loss': 3.424, 'grad_norm': 0.4569101333618164, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 557842432}\n{'loss': 3.4299, 'grad_norm': 0.48103874921798706, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 558891008}\n{'loss': 3.3483, 'grad_norm': 0.44187718629837036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 559939584}\n{'loss': 3.3196, 'grad_norm': 0.4359618127346039, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 560988160}\n{'loss': 3.4479, 'grad_norm': 0.37653473019599915, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 562036736}\n{'loss': 3.2509, 'grad_norm': 0.4397211968898773, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 563085312}\n{'loss': 3.4193, 'grad_norm': 0.5013746619224548, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 564133888}\n{'loss': 3.3391, 'grad_norm': 0.5044407844543457, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 565182464}\n{'loss': 3.3223, 'grad_norm': 0.45118412375450134, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 566231040}\n{'loss': 3.3041, 'grad_norm': 0.5617747902870178, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 567279616}\n{'loss': 3.3436, 'grad_norm': 0.5154598355293274, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 568328192}\n{'loss': 3.3739, 'grad_norm': 0.4647876024246216, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 569376768}\n{'loss': 3.3366, 'grad_norm': 0.3766598701477051, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 570425344}\n{'loss': 3.3098, 'grad_norm': 0.40857356786727905, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 571473920}\n{'loss': 3.0331, 'grad_norm': 0.4163903594017029, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 572522496}\n{'loss': 3.3184, 'grad_norm': 0.38519713282585144, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 573571072}\n{'loss': 3.3886, 'grad_norm': 0.38155344128608704, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 574619648}\n{'loss': 3.2855, 'grad_norm': 0.3684964179992676, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 575668224}\n{'loss': 3.0484, 'grad_norm': 0.3504279553890228, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 576716800}\n{'loss': 3.2702, 'grad_norm': 0.42653048038482666, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 577765376}\n{'loss': 3.312, 'grad_norm': 0.4263192415237427, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 578813952}\n{'loss': 3.3355, 'grad_norm': 0.4272316098213196, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 579862528}\n{'loss': 3.2806, 'grad_norm': 0.40996676683425903, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 580911104}\n{'loss': 3.2504, 'grad_norm': 0.403242826461792, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 581959680}\n{'loss': 3.2924, 'grad_norm': 0.46690869331359863, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 583008256}\n{'loss': 3.1466, 'grad_norm': 0.515250027179718, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 584056832}\n{'loss': 3.2898, 'grad_norm': 0.4872475266456604, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 585105408}\n{'loss': 3.3699, 'grad_norm': 0.43510228395462036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 586153984}\n{'loss': 3.1568, 'grad_norm': 0.4732394814491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 587202560}\n{'loss': 3.2145, 'grad_norm': 0.49767330288887024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 588251136}\n{'loss': 3.2966, 'grad_norm': 0.4968816936016083, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 589299712}\n{'loss': 3.2249, 'grad_norm': 0.4123048782348633, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 590348288}\n{'loss': 3.3819, 'grad_norm': 0.4349605143070221, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 591396864}\n{'loss': 3.3477, 'grad_norm': 0.47485488653182983, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 592445440}\n{'loss': 3.3202, 'grad_norm': 0.46784669160842896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 593494016}\n{'loss': 3.2231, 'grad_norm': 0.42318931221961975, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 594542592}\n{'loss': 3.2901, 'grad_norm': 0.40393564105033875, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 595591168}\n{'loss': 3.2065, 'grad_norm': 0.4144214391708374, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 596639744}\n{'loss': 2.8698, 'grad_norm': 0.40921372175216675, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 597688320}\n{'loss': 3.2242, 'grad_norm': 0.35226207971572876, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 598736896}\n{'loss': 3.2125, 'grad_norm': 0.43364742398262024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 599785472}\n{'loss': 3.2296, 'grad_norm': 0.4272080361843109, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 600834048}\n{'loss': 2.9346, 'grad_norm': 0.4155097007751465, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 601882624}\n{'loss': 3.2706, 'grad_norm': 0.4263918697834015, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 602931200}\n{'loss': 3.3124, 'grad_norm': 0.43336594104766846, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'eval_loss': 3.1686322689056396, 'eval_runtime': 664.0006, 'eval_samples_per_second': 24.675, 'eval_steps_per_second': 0.193, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'loss': 3.349, 'grad_norm': 0.4504219889640808, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 605028352}\n{'loss': 3.3015, 'grad_norm': 0.5899333953857422, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 606076928}\n{'loss': 3.2036, 'grad_norm': 0.5814825892448425, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 607125504}\n{'loss': 3.2786, 'grad_norm': 0.3971703350543976, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 608174080}\n{'loss': 3.0979, 'grad_norm': 0.5669280290603638, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 609222656}\n{'loss': 3.0683, 'grad_norm': 0.4786263406276703, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 610271232}\n{'loss': 3.1731, 'grad_norm': 0.46415817737579346, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 611319808}\n{'loss': 3.2282, 'grad_norm': 0.4295870363712311, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 612368384}\n{'loss': 3.2196, 'grad_norm': 0.4184265732765198, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 613416960}\n{'loss': 3.2445, 'grad_norm': 0.4624122381210327, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 614465536}\n{'loss': 3.1135, 'grad_norm': 0.3681364059448242, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 615514112}\n{'loss': 3.1877, 'grad_norm': 0.3612712621688843, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 616562688}\n{'loss': 3.308, 'grad_norm': 0.34696292877197266, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 617611264}\n{'loss': 3.4995, 'grad_norm': 0.5025363564491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 618659840}\n{'loss': 3.1853, 'grad_norm': 0.6652331352233887, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 619708416}\n{'loss': 3.1844, 'grad_norm': 0.7156277894973755, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 620756992}\n{'loss': 3.2325, 'grad_norm': 0.5241081118583679, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 621805568}\n{'loss': 2.972, 'grad_norm': 0.5001779198646545, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 622854144}\n{'loss': 3.1742, 'grad_norm': 0.4062795341014862, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 623902720}\n{'loss': 3.2539, 'grad_norm': 0.4671201705932617, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 624951296}\n{'loss': 3.1948, 'grad_norm': 0.3894169330596924, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 625999872}\n{'loss': 3.2469, 'grad_norm': 0.4665684998035431, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 627048448}\n{'loss': 3.2742, 'grad_norm': 0.43211206793785095, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 628097024}\n{'loss': 3.1195, 'grad_norm': 0.4476025700569153, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 629145600}\n{'loss': 3.2127, 'grad_norm': 0.3596750795841217, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 630194176}\n{'loss': 3.1741, 'grad_norm': 0.40869519114494324, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 631242752}\n{'loss': 3.1708, 'grad_norm': 0.36658936738967896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 632291328}\n{'loss': 3.0925, 'grad_norm': 0.35227081179618835, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 633339904}\n{'loss': 3.171, 'grad_norm': 0.3942136764526367, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 634388480}\n{'loss': 3.1729, 'grad_norm': 0.3163004219532013, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 635437056}\n{'loss': 3.1683, 'grad_norm': 0.35835322737693787, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 636485632}\n{'loss': 3.1118, 'grad_norm': 0.3395129144191742, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 637534208}\n{'loss': 3.2123, 'grad_norm': 0.38003110885620117, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 638582784}\n{'loss': 3.167, 'grad_norm': 0.4000258445739746, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 639631360}\n{'loss': 3.0668, 'grad_norm': 0.38393035531044006, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 640679936}\n{'loss': 2.9125, 'grad_norm': 0.38961607217788696, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 641728512}\n{'loss': 3.1024, 'grad_norm': 0.3406165540218353, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 642777088}\n{'loss': 3.1262, 'grad_norm': 0.4859096109867096, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 643825664}\n{'loss': 3.1155, 'grad_norm': 0.5454179048538208, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 644874240}\n{'loss': 3.1594, 'grad_norm': 0.46631914377212524, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 645922816}\n{'loss': 3.1164, 'grad_norm': 0.4049534797668457, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 646971392}\n{'loss': 2.9272, 'grad_norm': 0.32954707741737366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 648019968}\n{'loss': 3.0888, 'grad_norm': 0.409853458404541, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 649068544}\n{'loss': 3.2185, 'grad_norm': 0.43080267310142517, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 650117120}\n{'loss': 3.1871, 'grad_norm': 0.4323279857635498, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 651165696}\n{'loss': 2.9759, 'grad_norm': 0.3696155846118927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 652214272}\n{'loss': 3.1058, 'grad_norm': 0.3963398337364197, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 653262848}\n{'loss': 3.1214, 'grad_norm': 0.4020082652568817, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 654311424}\n{'loss': 3.0678, 'grad_norm': 0.4210987091064453, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 655360000}\n{'loss': 2.9177, 'grad_norm': 0.44535601139068604, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 656408576}\n{'loss': 3.1005, 'grad_norm': 0.363700807094574, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 657457152}\n{'loss': 3.0285, 'grad_norm': 0.393673837184906, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 658505728}\n{'loss': 3.031, 'grad_norm': 0.3472498059272766, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 659554304}\n{'loss': 3.1837, 'grad_norm': 0.45663976669311523, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 660602880}\n{'loss': 3.1636, 'grad_norm': 0.44765880703926086, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 661651456}\n{'loss': 3.0421, 'grad_norm': 0.5289708375930786, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 662700032}\n{'loss': 2.9394, 'grad_norm': 0.5272406339645386, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 663748608}\n{'loss': 3.2419, 'grad_norm': 0.5471237301826477, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 664797184}\n{'loss': 3.1506, 'grad_norm': 0.5762659311294556, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 665845760}\n{'loss': 3.1258, 'grad_norm': 0.5486758351325989, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 666894336}\n{'loss': 3.1686, 'grad_norm': 0.4877275228500366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 667942912}\n{'loss': 3.1062, 'grad_norm': 0.35992035269737244, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 668991488}\n{'loss': 3.1655, 'grad_norm': 0.39184319972991943, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 670040064}\n{'loss': 3.1455, 'grad_norm': 0.46003854274749756, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'eval_loss': 3.036459445953369, 'eval_runtime': 676.6057, 'eval_samples_per_second': 24.215, 'eval_steps_per_second': 0.189, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'loss': 3.1058, 'grad_norm': 0.45958808064460754, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 672137216}\n{'loss': 3.0861, 'grad_norm': 0.41562288999557495, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 673185792}\n{'loss': 3.1135, 'grad_norm': 0.38576263189315796, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 674234368}\n{'loss': 2.9998, 'grad_norm': 0.3936232924461365, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 675282944}\n{'loss': 3.1349, 'grad_norm': 0.3888678252696991, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 676331520}\n{'loss': 2.9192, 'grad_norm': 0.31759846210479736, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 677380096}\n{'loss': 3.1324, 'grad_norm': 0.3801535964012146, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 678428672}\n{'loss': 3.1064, 'grad_norm': 0.36299699544906616, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 679477248}\n{'loss': 3.2258, 'grad_norm': 0.36732324957847595, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 680525824}\n{'loss': 3.2162, 'grad_norm': 0.42108356952667236, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 681574400}\n{'loss': 3.2189, 'grad_norm': 0.4113474190235138, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 682622976}\n{'loss': 3.0585, 'grad_norm': 0.39936116337776184, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 683671552}\n{'loss': 3.0693, 'grad_norm': 0.35424771904945374, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 684720128}\n{'loss': 3.1134, 'grad_norm': 0.3333597183227539, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 685768704}\n{'loss': 3.0536, 'grad_norm': 0.37569180130958557, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 686817280}\n{'loss': 3.1396, 'grad_norm': 0.33836638927459717, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 687865856}\n{'loss': 3.1353, 'grad_norm': 0.31407052278518677, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 688914432}\n{'loss': 2.9977, 'grad_norm': 0.34316036105155945, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 689963008}\n{'loss': 3.1683, 'grad_norm': 0.3779186010360718, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 691011584}\n{'loss': 2.9567, 'grad_norm': 0.3414095342159271, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 692060160}\n{'loss': 3.0806, 'grad_norm': 0.31614938378334045, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 693108736}\n{'loss': 3.0975, 'grad_norm': 0.35552725195884705, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 694157312}\n{'loss': 3.0241, 'grad_norm': 0.38724133372306824, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 695205888}\n{'loss': 3.0701, 'grad_norm': 0.3581823408603668, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 696254464}\n{'loss': 3.0222, 'grad_norm': 0.3632317781448364, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 697303040}\n{'loss': 3.0188, 'grad_norm': 0.40560677647590637, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 698351616}\n{'loss': 3.106, 'grad_norm': 0.3953804075717926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 699400192}\n{'loss': 3.1552, 'grad_norm': 0.40652376413345337, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 700448768}\n{'loss': 2.8893, 'grad_norm': 0.3625616133213043, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 701497344}\n{'loss': 2.9183, 'grad_norm': 0.3450768291950226, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 702545920}\n{'loss': 2.9828, 'grad_norm': 0.36742398142814636, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 703594496}\n{'loss': 3.0327, 'grad_norm': 0.3611394762992859, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 704643072}\n{'loss': 3.1466, 'grad_norm': 0.3593210279941559, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 705691648}\n{'loss': 3.0163, 'grad_norm': 0.3994838297367096, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 706740224}\n{'loss': 3.0563, 'grad_norm': 0.41202738881111145, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 707788800}\n{'loss': 3.0912, 'grad_norm': 0.3404449224472046, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 708837376}\n{'loss': 3.0108, 'grad_norm': 0.3745224177837372, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 709885952}\n{'loss': 3.0864, 'grad_norm': 0.4320204555988312, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 710934528}\n{'loss': 3.0387, 'grad_norm': 0.34649956226348877, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 711983104}\n{'loss': 3.013, 'grad_norm': 0.34744057059288025, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 713031680}\n{'loss': 3.0985, 'grad_norm': 0.3638330101966858, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 714080256}\n{'loss': 3.1498, 'grad_norm': 0.43823716044425964, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 715128832}\n{'loss': 3.0366, 'grad_norm': 0.6364668011665344, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 716177408}\n{'loss': 2.9614, 'grad_norm': 0.6294976472854614, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 717225984}\n{'loss': 3.0619, 'grad_norm': 0.5871465802192688, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 718274560}\n{'loss': 3.1489, 'grad_norm': 0.7779986262321472, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 719323136}\n{'loss': 3.1331, 'grad_norm': 1.102079153060913, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 720371712}\n{'loss': 3.1423, 'grad_norm': 0.6352481245994568, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 721420288}\n{'loss': 3.1509, 'grad_norm': 0.5698557496070862, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 722468864}\n{'loss': 2.6683, 'grad_norm': 0.501290500164032, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 723517440}\n{'loss': 3.0334, 'grad_norm': 0.4512772560119629, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 724566016}\n{'loss': 3.0485, 'grad_norm': 0.4409146308898926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 725614592}\n{'loss': 3.0154, 'grad_norm': 0.3902524411678314, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 726663168}\n{'loss': 3.0742, 'grad_norm': 0.3692473769187927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 727711744}\n{'loss': 2.8306, 'grad_norm': 0.385005384683609, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 728760320}\n{'loss': 2.9258, 'grad_norm': 0.37514418363571167, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 729808896}\n{'loss': 3.0061, 'grad_norm': 0.42038342356681824, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 730857472}\n{'loss': 3.0588, 'grad_norm': 0.40415653586387634, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 731906048}\n{'loss': 2.9542, 'grad_norm': 0.38514354825019836, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 732954624}\n{'loss': 2.9252, 'grad_norm': 0.3861909806728363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 734003200}\n{'loss': 2.8432, 'grad_norm': 0.40519189834594727, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 735051776}\n{'loss': 2.9779, 'grad_norm': 0.37011685967445374, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 736100352}\n{'loss': 2.9908, 'grad_norm': 0.34850460290908813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 737148928}\n{'loss': 2.9589, 'grad_norm': 0.371500700712204, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n[2025-03-11 00:58:41 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n[2025-03-11 00:58:41 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 01:05:12 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n[2025-03-11 01:05:12 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.9496541023254395, 'eval_runtime': 714.5105, 'eval_samples_per_second': 22.93, 'eval_steps_per_second': 0.179, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n{'loss': 2.9029, 'grad_norm': 0.3044391870498657, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 739246080}\n{'loss': 2.8536, 'grad_norm': 0.34875407814979553, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 740294656}\n{'loss': 2.8478, 'grad_norm': 0.4568244516849518, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 741343232}\n{'loss': 3.1164, 'grad_norm': 0.44005003571510315, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 742391808}\n{'loss': 2.8584, 'grad_norm': 0.39490336179733276, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 743440384}\n{'loss': 3.0681, 'grad_norm': 0.4427798092365265, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 744488960}\n{'loss': 3.0315, 'grad_norm': 0.4771106243133545, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 745537536}\n{'loss': 2.8794, 'grad_norm': 0.4624035656452179, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 746586112}\n{'loss': 2.9624, 'grad_norm': 0.4244724214076996, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 747634688}\n{'loss': 2.9925, 'grad_norm': 0.39176708459854126, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 748683264}\n{'loss': 2.9753, 'grad_norm': 0.43686383962631226, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 749731840}\n{'loss': 3.0718, 'grad_norm': 0.4536241590976715, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 750780416}\n{'loss': 3.0065, 'grad_norm': 0.3421417772769928, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 751828992}\n{'loss': 2.8965, 'grad_norm': 0.30937010049819946, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 752877568}\n{'loss': 3.0347, 'grad_norm': 0.33371758460998535, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 753926144}\n{'loss': 3.0133, 'grad_norm': 0.3285418450832367, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 754974720}\n{'loss': 3.1219, 'grad_norm': 0.33177846670150757, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 756023296}\n{'loss': 2.9354, 'grad_norm': 0.36487525701522827, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 757071872}\n{'loss': 3.133, 'grad_norm': 0.35576146841049194, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 758120448}\n{'loss': 2.9771, 'grad_norm': 0.4217855930328369, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 759169024}\n{'loss': 2.9906, 'grad_norm': 0.4007001519203186, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 760217600}\n{'loss': 3.0219, 'grad_norm': 0.36323100328445435, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 761266176}\n{'loss': 2.89, 'grad_norm': 0.323297381401062, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 762314752}\n{'loss': 2.8566, 'grad_norm': 0.3450233042240143, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 763363328}\n{'loss': 3.0536, 'grad_norm': 0.36228489875793457, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 764411904}\n{'loss': 2.9259, 'grad_norm': 0.3553276062011719, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 765460480}\n{'loss': 2.8431, 'grad_norm': 0.37074941396713257, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 766509056}\n{'loss': 3.0549, 'grad_norm': 0.4105451703071594, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 767557632}\n{'loss': 2.8431, 'grad_norm': 0.4433744549751282, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 768606208}\n{'loss': 2.9545, 'grad_norm': 0.4024113416671753, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 769654784}\n{'loss': 2.9237, 'grad_norm': 0.3534025549888611, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 770703360}\n{'loss': 2.9306, 'grad_norm': 0.3788505792617798, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 771751936}\n{'loss': 2.9218, 'grad_norm': 0.3302527666091919, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 772800512}\n{'loss': 3.0647, 'grad_norm': 0.36651748418807983, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 773849088}\n{'loss': 3.0289, 'grad_norm': 0.35838624835014343, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 774897664}\n{'loss': 2.9157, 'grad_norm': 0.34652525186538696, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 775946240}\n{'loss': 2.9358, 'grad_norm': 0.37369009852409363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 776994816}\n{'loss': 3.0725, 'grad_norm': 0.37748783826828003, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 778043392}\n{'loss': 2.8444, 'grad_norm': 0.339287132024765, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 779091968}\n{'loss': 2.859, 'grad_norm': 0.3415367305278778, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 780140544}\n{'loss': 2.9334, 'grad_norm': 0.3661401569843292, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 781189120}\n{'loss': 3.0287, 'grad_norm': 0.3512025773525238, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 782237696}\n{'loss': 2.8093, 'grad_norm': 0.3412944972515106, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 783286272}\n{'loss': 2.9112, 'grad_norm': 0.35280412435531616, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 784334848}\n{'loss': 2.8939, 'grad_norm': 0.3652521073818207, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 785383424}\n{'loss': 2.961, 'grad_norm': 0.3336659371852875, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 786432000}\n{'loss': 2.9547, 'grad_norm': 0.3242711126804352, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 787480576}\n{'loss': 2.8035, 'grad_norm': 0.3276830017566681, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 788529152}\n{'loss': 2.9639, 'grad_norm': 0.32558611035346985, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 789577728}\n{'loss': 2.9981, 'grad_norm': 0.32141759991645813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 790626304}\n{'loss': 2.8053, 'grad_norm': 0.33697575330734253, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 791674880}\n{'loss': 2.9265, 'grad_norm': 0.3305177092552185, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 792723456}\n{'loss': 2.9357, 'grad_norm': 0.3303467035293579, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 793772032}\n{'loss': 2.9209, 'grad_norm': 0.33826348185539246, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 794820608}\n{'loss': 3.0134, 'grad_norm': 0.3682444393634796, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 795869184}\n{'loss': 2.8786, 'grad_norm': 0.364545613527298, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 796917760}\n{'loss': 3.0202, 'grad_norm': 0.4031524360179901, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 797966336}\n{'loss': 2.4912, 'grad_norm': 0.40752920508384705, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 799014912}\n{'loss': 2.9311, 'grad_norm': 0.36912065744400024, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 800063488}\n{'loss': 2.8768, 'grad_norm': 0.3906254172325134, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 801112064}\n{'loss': 2.8677, 'grad_norm': 0.3680756092071533, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 802160640}\n{'loss': 2.967, 'grad_norm': 0.42479801177978516, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 803209216}\n{'loss': 3.0138, 'grad_norm': 0.4966808259487152, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 804257792}\n{'loss': 2.9186, 'grad_norm': 0.413562536239624, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'eval_loss': 2.8718671798706055, 'eval_runtime': 1149.5487, 'eval_samples_per_second': 14.253, 'eval_steps_per_second': 0.111, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'loss': 2.8717, 'grad_norm': 0.3343268632888794, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 806354944}\n{'loss': 3.0123, 'grad_norm': 0.42326104640960693, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 807403520}\n{'loss': 2.9691, 'grad_norm': 0.35408785939216614, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 808452096}\n{'loss': 2.8862, 'grad_norm': 0.35168665647506714, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 809500672}\n{'loss': 2.9754, 'grad_norm': 0.3385300934314728, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 810549248}\n{'loss': 2.751, 'grad_norm': 0.36974239349365234, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 811597824}\n{'loss': 2.8481, 'grad_norm': 0.3535187244415283, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 812646400}\n{'loss': 2.9605, 'grad_norm': 0.39851564168930054, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 813694976}\n{'loss': 2.9251, 'grad_norm': 0.35983574390411377, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 814743552}\n{'loss': 2.8766, 'grad_norm': 0.34153202176094055, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 815792128}\n{'loss': 2.9205, 'grad_norm': 0.3700859546661377, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 816840704}\n{'loss': 2.7621, 'grad_norm': 0.3954067528247833, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 817889280}\n{'loss': 2.886, 'grad_norm': 0.4191531538963318, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 818937856}\n{'loss': 2.9203, 'grad_norm': 0.3315434157848358, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 819986432}\n{'loss': 2.9563, 'grad_norm': 0.3308311700820923, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 821035008}\n{'loss': 2.9391, 'grad_norm': 0.3073643445968628, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 822083584}\n{'loss': 2.7197, 'grad_norm': 0.3343094289302826, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 823132160}\n{'loss': 2.909, 'grad_norm': 0.31464704871177673, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 824180736}\n{'loss': 2.8581, 'grad_norm': 0.40213140845298767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 825229312}\n{'loss': 2.9224, 'grad_norm': 0.36158621311187744, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 826277888}\n{'loss': 2.985, 'grad_norm': 0.3831183910369873, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 827326464}\n{'loss': 2.8964, 'grad_norm': 0.3219353258609772, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 828375040}\n{'loss': 3.0832, 'grad_norm': 0.31743234395980835, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 829423616}\n{'loss': 2.9602, 'grad_norm': 0.3629371225833893, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 830472192}\n{'loss': 2.8327, 'grad_norm': 0.3800980746746063, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 831520768}\n{'loss': 2.8298, 'grad_norm': 0.3349006772041321, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 832569344}\n{'loss': 2.9633, 'grad_norm': 0.3282972276210785, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 833617920}\n{'loss': 2.9234, 'grad_norm': 0.3283899128437042, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 834666496}\n{'loss': 2.9754, 'grad_norm': 0.33885031938552856, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 835715072}\n{'loss': 2.8825, 'grad_norm': 0.3113347589969635, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 836763648}\n{'loss': 2.9483, 'grad_norm': 0.3759271204471588, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 837812224}\n{'loss': 2.8577, 'grad_norm': 0.38608986139297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 838860800}\n{'loss': 2.6639, 'grad_norm': 0.3253604471683502, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 839909376}\n{'loss': 2.8295, 'grad_norm': 0.31234994530677795, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 840957952}\n{'loss': 2.9323, 'grad_norm': 0.37187162041664124, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 842006528}\n{'loss': 3.2357, 'grad_norm': 0.5417175889015198, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 843055104}\n{'loss': 2.8982, 'grad_norm': 0.6133915781974792, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 844103680}\n{'loss': 2.928, 'grad_norm': 0.7637872099876404, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 845152256}\n{'loss': 2.9283, 'grad_norm': 0.7322977781295776, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 846200832}\n{'loss': 2.8209, 'grad_norm': 0.5112255215644836, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 847249408}\n{'loss': 2.8696, 'grad_norm': 0.49990609288215637, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 848297984}\n{'loss': 2.9193, 'grad_norm': 0.4511178135871887, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 849346560}\n{'loss': 2.9658, 'grad_norm': 0.4653412997722626, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 850395136}\n{'loss': 2.889, 'grad_norm': 0.3913695812225342, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 851443712}\n{'loss': 2.9534, 'grad_norm': 0.39285045862197876, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 852492288}\n{'loss': 2.8341, 'grad_norm': 0.5052099227905273, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 853540864}\n{'loss': 3.0436, 'grad_norm': 0.5978823900222778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 854589440}\n{'loss': 2.9484, 'grad_norm': 0.4584784507751465, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 855638016}\n{'loss': 2.8786, 'grad_norm': 0.40823692083358765, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 856686592}\n{'loss': 2.942, 'grad_norm': 0.4448293447494507, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 857735168}\n{'loss': 2.9347, 'grad_norm': 0.4112764596939087, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 858783744}\n{'loss': 2.8359, 'grad_norm': 0.3826068341732025, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 859832320}\n{'loss': 2.9277, 'grad_norm': 0.37165558338165283, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 860880896}\n{'loss': 2.6527, 'grad_norm': 0.4285834729671478, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 861929472}\n{'loss': 2.8451, 'grad_norm': 0.36497727036476135, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 862978048}\n{'loss': 2.9039, 'grad_norm': 0.35966625809669495, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 864026624}\n{'loss': 2.9268, 'grad_norm': 0.3529391586780548, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 865075200}\n{'loss': 2.9953, 'grad_norm': 0.3455546498298645, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 866123776}\n{'loss': 2.9307, 'grad_norm': 0.3788530230522156, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 867172352}\n{'loss': 2.9448, 'grad_norm': 0.35837656259536743, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 868220928}\n{'loss': 2.9937, 'grad_norm': 0.3842633366584778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 869269504}\n{'loss': 2.8324, 'grad_norm': 0.32774215936660767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 870318080}\n{'loss': 2.8613, 'grad_norm': 0.327158659696579, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 871366656}\n{'loss': 2.7653, 'grad_norm': 0.3515920639038086, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n[2025-03-11 02:50:38 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n[2025-03-11 02:50:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 02:58:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n[2025-03-11 02:58:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:00:11 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n[2025-03-11 03:00:11 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:01:14 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n[2025-03-11 03:01:14 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.816462278366089, 'eval_runtime': 954.8041, 'eval_samples_per_second': 17.16, 'eval_steps_per_second': 0.134, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n{'loss': 2.867, 'grad_norm': 0.3173666000366211, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 873463808}\n{'loss': 2.8701, 'grad_norm': 0.3399354815483093, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 874512384}\n{'loss': 2.8575, 'grad_norm': 0.36704689264297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 875560960}\n{'loss': 2.9582, 'grad_norm': 0.33231136202812195, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 876609536}\n{'loss': 2.7719, 'grad_norm': 0.34316956996917725, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 877658112}\n{'loss': 2.8915, 'grad_norm': 0.3483976423740387, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 878706688}\n{'loss': 2.7566, 'grad_norm': 0.3104913532733917, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 879755264}\n{'loss': 3.0013, 'grad_norm': 0.38844239711761475, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 880803840}\n{'loss': 2.5568, 'grad_norm': 0.40875244140625, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 881852416}\n{'loss': 2.8336, 'grad_norm': 0.3538399934768677, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 882900992}\n{'loss': 2.9391, 'grad_norm': 0.3494492471218109, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 883949568}\n{'loss': 2.8535, 'grad_norm': 0.3472343981266022, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 884998144}\n{'loss': 2.9836, 'grad_norm': 0.34867390990257263, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 886046720}\n{'loss': 2.8416, 'grad_norm': 0.3527415096759796, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 887095296}\n{'loss': 2.8756, 'grad_norm': 0.3338777422904968, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 888143872}\n{'loss': 2.8428, 'grad_norm': 0.3345812261104584, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 889192448}\n{'loss': 2.8977, 'grad_norm': 0.31487980484962463, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 890241024}\n{'loss': 2.9543, 'grad_norm': 0.3655254542827606, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 891289600}\n{'loss': 2.9423, 'grad_norm': 0.33075806498527527, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 892338176}\n{'loss': 2.9001, 'grad_norm': 0.34644609689712524, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 893386752}\n{'loss': 2.9029, 'grad_norm': 0.39070528745651245, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 894435328}\n{'loss': 2.9101, 'grad_norm': 0.39556533098220825, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 895483904}\n{'loss': 2.8119, 'grad_norm': 0.39002978801727295, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 896532480}\n{'loss': 3.0102, 'grad_norm': 0.37797507643699646, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 897581056}\n{'loss': 2.666, 'grad_norm': 0.4306756258010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 898629632}\n{'loss': 2.9257, 'grad_norm': 0.4526049494743347, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 899678208}\n{'loss': 2.8196, 'grad_norm': 0.3978416621685028, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 900726784}\n{'loss': 2.9057, 'grad_norm': 0.3925896883010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 901775360}\n{'loss': 3.0017, 'grad_norm': 0.45828214287757874, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 902823936}\n{'loss': 2.89, 'grad_norm': 0.4745008647441864, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 903872512}\n{'loss': 2.7335, 'grad_norm': 0.4270082116127014, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 904921088}\n{'loss': 2.8234, 'grad_norm': 0.38832950592041016, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 905969664}\n{'loss': 2.8618, 'grad_norm': 0.3907729387283325, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 907018240}\n{'loss': 2.8703, 'grad_norm': 0.368655264377594, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 908066816}\n{'loss': 2.8321, 'grad_norm': 0.41538506746292114, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 909115392}\n{'loss': 2.886, 'grad_norm': 0.41877180337905884, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 910163968}\n{'loss': 2.6224, 'grad_norm': 0.33238673210144043, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 911212544}\n{'loss': 2.8617, 'grad_norm': 0.4095931351184845, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 912261120}\n{'loss': 2.8172, 'grad_norm': 0.41708603501319885, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 913309696}\n{'loss': 2.7658, 'grad_norm': 0.37449270486831665, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 914358272}\n{'loss': 2.9042, 'grad_norm': 0.3935737609863281, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 915406848}\n{'loss': 2.7612, 'grad_norm': 0.3586251735687256, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 916455424}\n{'loss': 2.8785, 'grad_norm': 0.3712047338485718, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 917504000}\n{'loss': 2.739, 'grad_norm': 0.37707045674324036, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 918552576}\n{'loss': 2.8372, 'grad_norm': 0.3432702422142029, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 919601152}\n{'loss': 2.5638, 'grad_norm': 0.3493041396141052, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 920649728}\n{'loss': 2.8759, 'grad_norm': 0.3401539623737335, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 921698304}\n{'loss': 3.0048, 'grad_norm': 0.4632040858268738, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 922746880}\n{'loss': 2.9394, 'grad_norm': 0.4968065023422241, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 923795456}\n{'loss': 2.8441, 'grad_norm': 0.5426673889160156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 924844032}\n{'loss': 2.9975, 'grad_norm': 0.4630672037601471, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 925892608}\n{'loss': 2.9584, 'grad_norm': 0.38806748390197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 926941184}\n{'loss': 2.8904, 'grad_norm': 0.39797642827033997, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 927989760}\n{'loss': 2.5774, 'grad_norm': 0.4063512980937958, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 929038336}\n{'loss': 2.812, 'grad_norm': 0.3161136209964752, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 930086912}\n{'loss': 2.7483, 'grad_norm': 0.3628361225128174, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 931135488}\n{'loss': 2.7916, 'grad_norm': 0.37376269698143005, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 932184064}\n{'loss': 2.7985, 'grad_norm': 0.3399117887020111, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 933232640}\n{'loss': 2.7107, 'grad_norm': 0.3453179597854614, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 934281216}\n{'loss': 2.9254, 'grad_norm': 0.39461833238601685, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 935329792}\n{'loss': 2.8487, 'grad_norm': 0.3668413460254669, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 936378368}\n{'loss': 2.7928, 'grad_norm': 0.28304487466812134, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 937426944}\n{'loss': 2.8503, 'grad_norm': 0.35816267132759094, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 938475520}\n{'loss': 3.0328, 'grad_norm': 0.3540339469909668, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n[2025-03-11 03:46:08 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n[2025-03-11 03:46:08 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:53:27 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n[2025-03-11 03:53:27 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.7651162147521973, 'eval_runtime': 687.962, 'eval_samples_per_second': 23.815, 'eval_steps_per_second': 0.186, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n{'loss': 2.9368, 'grad_norm': 0.34962671995162964, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 940572672}\n{'loss': 2.3627, 'grad_norm': 0.37516310811042786, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 941621248}\n{'loss': 2.8854, 'grad_norm': 0.3487492501735687, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 942669824}\n{'loss': 2.7892, 'grad_norm': 0.37180987000465393, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 943718400}\n{'loss': 2.8067, 'grad_norm': 0.3387952744960785, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 944766976}\n{'loss': 2.841, 'grad_norm': 0.32076528668403625, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 945815552}\n{'loss': 2.7965, 'grad_norm': 0.3348572552204132, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 946864128}\n{'loss': 2.6788, 'grad_norm': 0.3531329929828644, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 947912704}\n{'loss': 2.7276, 'grad_norm': 0.300353467464447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 948961280}\n{'loss': 2.8189, 'grad_norm': 0.3258875012397766, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 950009856}\n{'loss': 2.8388, 'grad_norm': 0.3434987962245941, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 951058432}\n{'loss': 2.856, 'grad_norm': 0.33045029640197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 952107008}\n{'loss': 2.658, 'grad_norm': 0.34896957874298096, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 953155584}\n{'loss': 2.8484, 'grad_norm': 0.3819083273410797, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 954204160}\n{'loss': 2.8402, 'grad_norm': 0.39541998505592346, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 955252736}\n{'loss': 2.8281, 'grad_norm': 0.3843367397785187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 956301312}\n{'loss': 2.8339, 'grad_norm': 0.4067714214324951, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 957349888}\n{'loss': 2.8693, 'grad_norm': 0.3071018159389496, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 958398464}\n{'loss': 2.6747, 'grad_norm': 0.3676702380180359, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 959447040}\n{'loss': 2.6961, 'grad_norm': 0.357799232006073, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 960495616}\n{'loss': 2.7944, 'grad_norm': 0.318391352891922, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 961544192}\n{'loss': 2.8084, 'grad_norm': 0.32000190019607544, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 962592768}\n{'loss': 2.8024, 'grad_norm': 0.3250137269496918, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 963641344}\n{'loss': 2.7951, 'grad_norm': 0.33021438121795654, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 964689920}\n{'loss': 2.8069, 'grad_norm': 0.3257495164871216, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 965738496}\n{'loss': 2.8148, 'grad_norm': 0.3608018159866333, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 966787072}\n[2025-03-11 04:13:12 WARNING] '(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n[2025-03-11 04:13:12 WARNING] Retrying in 1s [Retry 1/5].\n{'loss': 2.8089, 'grad_norm': 0.3657573163509369, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 967835648}\n{'loss': 2.8243, 'grad_norm': 0.3791966736316681, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 968884224}\n{'loss': 2.6837, 'grad_norm': 0.4036826193332672, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 969932800}\n{'loss': 2.6694, 'grad_norm': 0.34643635153770447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 970981376}\n{'loss': 2.8455, 'grad_norm': 0.35321497917175293, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 972029952}\n{'loss': 2.5156, 'grad_norm': 0.3488744795322418, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 973078528}\n{'loss': 2.7185, 'grad_norm': 0.33396172523498535, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 974127104}\n{'loss': 2.856, 'grad_norm': 0.36425134539604187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 975175680}\n{'loss': 2.7639, 'grad_norm': 0.34361588954925537, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 976224256}\n{'loss': 2.7777, 'grad_norm': 0.45501893758773804, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 977272832}\n{'loss': 2.8692, 'grad_norm': 0.4391760230064392, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 978321408}\n{'loss': 2.7885, 'grad_norm': 0.385729044675827, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 979369984}\n{'loss': 2.8622, 'grad_norm': 0.4122815728187561, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 980418560}\n{'loss': 2.674, 'grad_norm': 0.3223947584629059, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 981467136}\n{'loss': 2.7148, 'grad_norm': 0.39820024371147156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 982515712}\n{'loss': 2.6975, 'grad_norm': 0.38311144709587097, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 983564288}\n{'loss': 2.8515, 'grad_norm': 0.4324709177017212, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 984612864}\n{'loss': 2.5684, 'grad_norm': 0.3579341471195221, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 985661440}\n{'loss': 2.9478, 'grad_norm': 0.4081536531448364, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 986710016}\n{'loss': 2.7375, 'grad_norm': 0.4332145154476166, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 987758592}\n{'loss': 2.7773, 'grad_norm': 0.43510711193084717, 'learning_rate': 0.001, 'epoch': 0.12, 'num_input_tokens_seen': 988807168}\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 1378, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\n\n</details>", "Two more today:\n```python\nFileNotFoundError: zstd://example_holdout_5012.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5012.jsonl.zst\n```\nand\n```python\nFileNotFoundError: zstd://example_holdout_3073.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk2/example_holdout_3073.jsonl.zst\n```\nboth of which exist on the hub ([here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk4/example_holdout_5012.jsonl.zst) and [here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk2/example_holdout_3073.jsonl.zst)).", "I also observe the same thing when using streaming with DCLM dataset with 64 GPUs. I have tried ```export HF_DATASETS_STREAMING_PARALLELISM=1``` but doesn't help.", "Another error today, this time a 504 gateway timeout `HfHubHTTPError`. I have no idea if this is related, but I suspect that it is considering the setup is identical. Notably though, the two errors I posted yesterday were for evaluation (hence the `holdout` in the URLs) whereas today there was no problem doing that first evaluation, but now the `train` split failed.\n```python\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 2226, in __iter__\n for key, example in ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1499, in __iter__\n for x in self.ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1067, in __iter__\n yield from self._iter()\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1231, in _iter\n for key, transformed_example in iter_outputs():\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1207, in iter_outputs\n for i, key_example in inputs_iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1111, in iter_inputs\n for key, example in iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 371, in __iter__\n for key, pa_table in self.generate_tables_fn(**gen_kwags):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py\", line 114, in _generate_tables\n with open(file, \"rb\") as f:\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/streaming.py\", line 75, in wrapper\n return function(*args, download_config=download_config, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 948, in xopen\n file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/filesystems/compression.py\", line 85, in _open\n return self._open_with_fsspec().open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 234, in _open\n return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 691, in __init__\n self.details = fs.info(self.resolved_path.unresolve(), expand_info=False)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 524, in info\n self.ls(parent_path, expand_info=False)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 284, in ls\n out = self._ls_tree(path, refresh=refresh, revision=revision, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 375, in _ls_tree\n for path_info in tree:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_api.py\", line 3080, in list_repo_tree\n for path_info in paginate(path=tree_url, headers=headers, params={\"recursive\": recursive, \"expand\": expand}):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_pagination.py\", line 46, in paginate\n hf_raise_for_status(r)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_http.py\", line 477, in hf_raise_for_status\n raise _format(HfHubHTTPError, str(e), response) from e\nhuggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/cerebras/SlimPajama-627B/tree/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train%2Fchunk8?recursive=False&expand=False&cursor=ZXlKbWFXeGxYMjVoYldVaU9pSjBjbUZwYmk5amFIVnVhemd2WlhoaGJYQnNaVjkwY21GcGJsOHpOams0TG1wemIyNXNMbnB6ZENKOTozMDAw\n```", "Another one today:\n```python\nFileNotFoundError: zstd://example_train_4985.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk5/example_train_4985.jsonl.zst\n```", "This is a constant issue, and has been for six months, at least. Currently, half of my streaming datasets are failing with errors like this.\n\nMuennighoff/natural-instructions:\n```\n File \"/home/crow/repos/praxis/.venv/lib/python3.13/site-packages/datasets/utils/file_utils.py\", line 1379, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: hf://datasets/Muennighoff/natural-instructions@a29a9757125f4bb1c26445ad0d2ef7d9b2cc9c4c/train/task343_winomt_classification_profession_anti_train.jsonl\n```\nopen-phi/textbooks:\n```\n File \"/home/crow/repos/praxis/.venv/lib/python3.13/site-packages/datasets/utils/file_utils.py\", line 1379, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: hf://datasets/open-phi/textbooks@292aaae99cbecacad50f692d7327887f05dacaf2/data/train-00000-of-00001-b513d9e388d56453.parquet\n```\nHuggingFaceTB/smoltalk:\n```\n File \"/home/crow/repos/praxis/.venv/lib/python3.13/site-packages/datasets/utils/file_utils.py\", line 1379, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: hf://datasets/HuggingFaceTB/smoltalk@5feaf2fd3ffca7c237fc38d1861bc30365d48ffa/data/all/train-00003-of-00009.parquet\n```", "This line of issues has now been going on since April of 2024. It is now August of 2025. I opened this particular issue almost five months ago. Our training runs are still failing. It is apparently too difficult for `datasets` to reliable fetch some text from some server. This is by far the biggest bottleneck in our research and the amount of time spent on setbacks caused by this is unimaginable.\n\nA week ago:\n```python\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 2361, in __iter__\n generator=generator, features=features, gen_kwargs=gen_kwargs, streaming=True, split=split\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1558, in __iter__\n )\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1107, in __iter__\n # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset\n ^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1286, in _iter\n iterator = _convert_to_arrow(\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1267, in iter_outputs\n num_examples_to_skip -= 1\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1156, in iter_inputs\n additional_args = ()\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 397, in __iter__\n shard_example_idx_start = self._state_dict[\"shard_example_idx\"] if self._state_dict else 0\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py\", line 99, in _generate_tables\n for file_idx, file in enumerate(itertools.chain.from_iterable(files)):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/track.py\", line 49, in __iter__\n for x in self.generator(*self.args):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 1359, in _iter_from_urlpaths\n cls, urlpaths: Union[str, list[str]], download_config: Optional[DownloadConfig] = None\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nFileNotFoundError: zstd://example_train_1820.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk2/example_train_1820.jsonl.zst\n```\nToday:\n```python\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 2270, in __iter__\n for key, example in ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1535, in __iter__\n for x in self.ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1084, in __iter__\n yield from self._iter()\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1263, in _iter\n for key, transformed_example in outputs:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1244, in iter_outputs\n for i, key_example in inputs_iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1133, in iter_inputs\n for key, example in iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 374, in __iter__\n for key, pa_table in self.generate_tables_fn(**gen_kwags):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py\", line 99, in _generate_tables\n for file_idx, file in enumerate(itertools.chain.from_iterable(files)):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/track.py\", line 49, in __iter__\n for x in self.generator(*self.args):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 1379, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: zstd://example_train_5054.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5054.jsonl.zst\n```\nSeriously?" ]
2025-03-07T19:14:18Z
2025-07-22T08:15:44Z
null
NONE
null
null
null
null
### Describe the bug In https://github.com/huggingface/datasets/issues/6843 it was noted that the streaming feature of `datasets` is highly susceptible to outages and doesn't back off for long (or even *at all*). I was training a model while streaming SlimPajama and training crashed with a `FileNotFoundError`. I can only assume that this was due to a momentary outage considering the file in question, `train/chunk9/example_train_3889.jsonl.zst`, [exists like all other files in SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/train/chunk9/example_train_3889.jsonl.zst). ```python ... File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 2226, in __iter__ for key, example in ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1499, in __iter__ for x in self.ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1067, in __iter__ yield from self._iter() File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1231, in _iter for key, transformed_example in iter_outputs(): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1207, in iter_outputs for i, key_example in inputs_iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1111, in iter_inputs for key, example in iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 371, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py", line 99, in _generate_tables for file_idx, file in enumerate(itertools.chain.from_iterable(files)): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/track.py", line 50, in __iter__ for x in self.generator(*self.args): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py", line 1378, in _iter_from_urlpaths raise FileNotFoundError(urlpath) FileNotFoundError: zstd://example_train_3889.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_3889.jsonl.zst ``` That final `raise` is at the bottom of the following snippet: https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/utils/file_utils.py#L1354-L1379 So clearly, something choked up in `xisfile`. ### Steps to reproduce the bug This happens when streaming a dataset and iterating over it. In my case, that iteration is done in Trainer's `inner_training_loop`, but this is not relevant to the iterator. ```python File "/miniconda3/envs/draft/lib/python3.11/site-packages/accelerate/data_loader.py", line 835, in __iter__ next_batch, next_batch_info = self._fetch_batches(main_iterator) ``` ### Expected behavior This bug and the linked issue have one thing in common: *when streaming fails to retrieve an example, the entire program gives up and crashes*. As users, we cannot even protect ourselves from this: when we are iterating over a dataset, we can't make `datasets` skip over a bad example or wait a little longer to retry the iteration, because when a Python generator/iterator raises an error, it loses all its context. In other words: if you have something that looks like `for b in a: for c in b: for d in c:`, errors in the innermost loop can only be caught by a `try ... except` in `c.__iter__()`. There should be such exception handling in `datasets` and it should have a **configurable exponential back-off**: first wait and retry after 1 minute, then 2 minutes, then 4 minutes, then 8 minutes, ... and after a given amount of retries, **skip the bad example**, and **only after** skipping a given amount of examples, give up and crash. This was requested in https://github.com/huggingface/datasets/issues/6843 too, since currently there is only linear backoff *and* it is clearly not applied to `xisfile`. ### Environment info - `datasets` version: 3.3.2 *(the latest version)* - Platform: Linux-4.18.0-513.24.1.el8_9.x86_64-x86_64-with-glibc2.28 - Python version: 3.11.7 - `huggingface_hub` version: 0.26.5 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2024.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7440/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7440/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7433
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7433/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7433/comments
https://api.github.com/repos/huggingface/datasets/issues/7433/events
https://github.com/huggingface/datasets/issues/7433
2,890,240,400
I_kwDODunzps6sRZGQ
7,433
`Dataset.map` ignores existing caches and remaps when ran with different `num_proc`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "This feels related: https://github.com/huggingface/datasets/issues/3044", "@lhoestq This comment specifically, I agree:\n\n* https://github.com/huggingface/datasets/issues/3044#issuecomment-1239877570\n\n> Almost a year later and I'm in a similar boat. Using custom fingerprints and when using multiprocessing the cached datasets are saved with a template at the end of the filename (something like \"000001_of_000008\" for every process of num_proc). So if in the next time you run the script you set num_proc to a different number, the cache cannot be used.\n> \n> Is there any way to get around this? I am processing a huge dataset so I do the processing on one machine and then transfer the processed data to another in its cache dir but currently that's not possible due to num_proc mismatch.\n\n" ]
2025-03-03T05:51:26Z
2025-05-12T15:14:09Z
2025-05-12T15:14:09Z
NONE
null
null
null
null
### Describe the bug If you `map` a dataset and save it to a specific `cache_file_name` with a specific `num_proc`, and then call map again with that same existing `cache_file_name` but a different `num_proc`, the dataset will be re-mapped. ### Steps to reproduce the bug 1. Download a dataset ```python import datasets dataset = datasets.load_dataset("ylecun/mnist") ``` ``` Generating train split: 100%|██████████| 60000/60000 [00:00<00:00, 116429.85 examples/s] Generating test split: 100%|██████████| 10000/10000 [00:00<00:00, 103310.27 examples/s] ``` 2. `map` and cache it with a specific `num_proc` ```python cache_file_name="./cache/train.map" dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=2) ``` ``` Map (num_proc=2): 100%|██████████| 60000/60000 [00:01<00:00, 53764.03 examples/s] ``` 3. `map` it with a different `num_proc` and the same `cache_file_name` as before ```python dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=3) ``` ``` Map (num_proc=3): 100%|██████████| 60000/60000 [00:00<00:00, 65377.12 examples/s] ``` ### Expected behavior If I specify an existing `cache_file_name`, I don't expect using a different `num_proc` than the one that was used to generate it to cause the dataset to have be be re-mapped. ### Environment info ```console $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7433/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7433/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7431
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7431/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7431/comments
https://api.github.com/repos/huggingface/datasets/issues/7431/events
https://github.com/huggingface/datasets/issues/7431
2,887,244,074
I_kwDODunzps6sF9kq
7,431
Issues with large Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/106806889?v=4", "events_url": "https://api.github.com/users/nikitabelooussovbtis/events{/privacy}", "followers_url": "https://api.github.com/users/nikitabelooussovbtis/followers", "following_url": "https://api.github.com/users/nikitabelooussovbtis/following{/other_user}", "gists_url": "https://api.github.com/users/nikitabelooussovbtis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikitabelooussovbtis", "id": 106806889, "login": "nikitabelooussovbtis", "node_id": "U_kgDOBl2-aQ", "organizations_url": "https://api.github.com/users/nikitabelooussovbtis/orgs", "received_events_url": "https://api.github.com/users/nikitabelooussovbtis/received_events", "repos_url": "https://api.github.com/users/nikitabelooussovbtis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikitabelooussovbtis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikitabelooussovbtis/subscriptions", "type": "User", "url": "https://api.github.com/users/nikitabelooussovbtis", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "what's the error message ?", "This was the final error message that it was giving pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0", "Here is the list of errors:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 160, in _generate_tables\n df = pandas_read_json(f)\n ^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 38, in pandas_read_json\n return pd.read_json(path_or_buf, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 815, in read_json\n return json_reader.read()\n ^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1025, in read\n obj = self._get_object_parser(self.data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1051, in _get_object_parser\n obj = FrameParser(json, **kwargs).parse()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1187, in parse\n self._parse()\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1402, in _parse\n self.obj = DataFrame(\n ^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/frame.py\", line 778, in __init__\n mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 503, in dict_to_mgr\n return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 114, in arrays_to_mgr\n index = _extract_index(arrays)\n ^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 677, in _extract_index\n raise ValueError(\"All arrays must be of the same length\")\nValueError: All arrays must be of the same length\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1854, in _prepare_split_single\n for _, table in generator:\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 163, in _generate_tables\n raise e\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 137, in _generate_tables\n pa_table = paj.read_json(\n ^^^^^^^^^^^^^^\n File \"pyarrow/_json.pyx\", line 308, in pyarrow._json.read_json\n File \"pyarrow/error.pxi\", line 155, in pyarrow.lib.pyarrow_internal_check_status\n File \"pyarrow/error.pxi\", line 92, in pyarrow.lib.check_status\npyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to number in row 0\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"run_object_detection.py\", line 582, in <module>\n main()\n File \"run_object_detection.py\", line 407, in main\n dataset = load_dataset(\n ^^^^^^^^^^^^^\n File \"venv/lib/python3.12/site-packages/datasets/load.py\", line 2151, in load_dataset\n builder_instance.download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 924, in download_and_prepare\n self._download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1000, in _download_and_prepare\n self._prepare_split(split_generator, **prepare_split_kwargs)\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1741, in _prepare_split\n for job_id, done, content in self._prepare_split_single(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1897, in _prepare_split_single\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\ndatasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset", "`datasets` is based on Arrow which expects all the lists inside the data to be of fixed type. Arrow can't load lists that contain a mix of integers and strings for example. In your case it looks like one of the lists contains numbers and JSON objects.\n\nI'd suggest you to reformat the data to end up with list of fixed types, otherwise you won't be able to load the data in `datasets`" ]
2025-02-28T14:05:22Z
2025-03-04T15:02:26Z
null
NONE
null
null
null
null
### Describe the bug If the coco annotation file is too large the dataset will not be able to load it, not entirely sure were the issue is but I am guessing it is due to the code trying to load it all as one line into a dataframe. This was for object detections. My current work around is the following code but would be nice to be able to do it without worrying about it also probably there is a better way of doing it: ` dataset_dict = json.load(open("./local_data/annotations/train.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) train=Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/validation.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) val = Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/test.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) test = Dataset.from_pandas(df) dataset = DatasetDict({'train': train, 'validation': val, 'test': test}) ` ### Steps to reproduce the bug 1) step up directory in and have the json files in coco format -local_data |-images |---1.jpg |---2.jpg |---.... |---n.jpg |-annotations |---test.json |---train.json |---validation.json 2) try to load local_data into a dataset if the file is larger than about 300kb it will cause an error. ### Expected behavior That it loads the jsons preferably in the same format as it has done with a smaller size. ### Environment info - `datasets` version: 3.3.3.dev0 - Platform: Linux-6.11.0-17-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.29.0 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7431/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7431/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7430
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7430/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7430/comments
https://api.github.com/repos/huggingface/datasets/issues/7430/events
https://github.com/huggingface/datasets/issues/7430
2,886,922,573
I_kwDODunzps6sEvFN
7,430
Error in code "Time to slice and dice" from course "NLP Course"
{ "avatar_url": "https://avatars.githubusercontent.com/u/122965300?v=4", "events_url": "https://api.github.com/users/Yurkmez/events{/privacy}", "followers_url": "https://api.github.com/users/Yurkmez/followers", "following_url": "https://api.github.com/users/Yurkmez/following{/other_user}", "gists_url": "https://api.github.com/users/Yurkmez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Yurkmez", "id": 122965300, "login": "Yurkmez", "node_id": "U_kgDOB1RNNA", "organizations_url": "https://api.github.com/users/Yurkmez/orgs", "received_events_url": "https://api.github.com/users/Yurkmez/received_events", "repos_url": "https://api.github.com/users/Yurkmez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Yurkmez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yurkmez/subscriptions", "type": "User", "url": "https://api.github.com/users/Yurkmez", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You should open an issue in the NLP course website / github page. I'm closing this issue if you don't mind", "ok, i don't mind, i'll mark the error there" ]
2025-02-28T11:36:10Z
2025-03-05T11:32:47Z
2025-03-03T17:52:15Z
NONE
null
null
null
null
### Describe the bug When we execute code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` answer should be like this condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 but he is different frequency | count birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 this is not correct, correct code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "count": "frequency"}) ) ```` ### Steps to reproduce the bug ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` ### Expected behavior condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 ### Environment info Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7430/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7430/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7427/comments
https://api.github.com/repos/huggingface/datasets/issues/7427/events
https://github.com/huggingface/datasets/issues/7427
2,886,032,571
I_kwDODunzps6sBVy7
7,427
Error splitting the input into NAL units.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47114466?v=4", "events_url": "https://api.github.com/users/MengHao666/events{/privacy}", "followers_url": "https://api.github.com/users/MengHao666/followers", "following_url": "https://api.github.com/users/MengHao666/following{/other_user}", "gists_url": "https://api.github.com/users/MengHao666/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MengHao666", "id": 47114466, "login": "MengHao666", "node_id": "MDQ6VXNlcjQ3MTE0NDY2", "organizations_url": "https://api.github.com/users/MengHao666/orgs", "received_events_url": "https://api.github.com/users/MengHao666/received_events", "repos_url": "https://api.github.com/users/MengHao666/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MengHao666/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MengHao666/subscriptions", "type": "User", "url": "https://api.github.com/users/MengHao666", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`", "> First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`\n\nany recommendation for `multiprocess` and `dill`" ]
2025-02-28T02:30:15Z
2025-03-04T01:40:28Z
null
NONE
null
null
null
null
### Describe the bug I am trying to finetune qwen2.5-vl on 16 * 80G GPUS, and I use `LLaMA-Factory` and set `preprocessing_num_workers=16`. However, I met the following error and the program seem to got crush. It seems that the error come from `datasets` library The error logging is like following: ```text Converting format of dataset (num_proc=16): 100%|█████████▉| 19265/19267 [11:44<00:00, 5.88 examples/s] Converting format of dataset (num_proc=16): 100%|█████████▉| 19266/19267 [11:44<00:00, 5.02 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 5.44 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 27.34 examples/s] Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [00:00<?, ? examples/s] Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. ``` ### Others _No response_ ### Steps to reproduce the bug None ### Expected behavior excpect to run successfully ### Environment info ``` transformers==4.49.0 datasets==3.2.0 accelerate==1.2.1 peft==0.12.0 trl==0.9.6 tokenizers==0.21.0 gradio>=4.38.0,<=5.18.0 pandas>=2.0.0 scipy einops sentencepiece tiktoken protobuf uvicorn pydantic fastapi sse-starlette matplotlib>=3.7.0 fire packaging pyyaml numpy<2.0.0 av librosa tyro<0.9.0 openlm-hub qwen-vl-utils ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7427/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7427/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7425
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7425/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7425/comments
https://api.github.com/repos/huggingface/datasets/issues/7425/events
https://github.com/huggingface/datasets/issues/7425
2,883,684,686
I_kwDODunzps6r4YlO
7,425
load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") TypeError: 'NoneType' object is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/42167236?v=4", "events_url": "https://api.github.com/users/dshwei/events{/privacy}", "followers_url": "https://api.github.com/users/dshwei/followers", "following_url": "https://api.github.com/users/dshwei/following{/other_user}", "gists_url": "https://api.github.com/users/dshwei/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dshwei", "id": 42167236, "login": "dshwei", "node_id": "MDQ6VXNlcjQyMTY3MjM2", "organizations_url": "https://api.github.com/users/dshwei/orgs", "received_events_url": "https://api.github.com/users/dshwei/received_events", "repos_url": "https://api.github.com/users/dshwei/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dshwei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dshwei/subscriptions", "type": "User", "url": "https://api.github.com/users/dshwei", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "> datasets\n\nHi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n\n![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)", "Hey guys,\nI tried to reproduce the issue and it works fine. I used google colab as enviroment.\n\n![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)", "> Hey guys, I tried to reproduce the issue and it works fine. I used google colab as enviroment.\n> \n> ![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)\n\nThanks for your kind reply! I wonder which Python version do you use? My Python version is 3.11.11 and datasets version is 3.3.2 but I still met this bug.\n\n<img width=\"1121\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/7c2c5007-ee55-4030-94b9-01fcdea0bf4a\" />", "@zwxandy It's Python 3.11.11", "@Serzhanov @zwxandy I have met the same problem, have this problem be solved?", "> [@Serzhanov](https://github.com/Serzhanov) [@zwxandy](https://github.com/zwxandy) I have met the same problem, have this problem be solved?\n\nI try to downgrade datasets version to 2.20.0,and it works for me @Serzhanov @dshwei , hope this work for you too :)", "> > datasets\n> \n> Hi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n> \n> ![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)\n\nHi, have you resolved this problem? I meet the same bug when evaluating the ’Open-R1’, too. Looking forward to your reply!", "> > [@Serzhanov](https://github.com/Serzhanov) [@zwxandy](https://github.com/zwxandy) I have met the same problem, have this problem be solved?\n> \n> I try to downgrade datasets version to 2.20.0,and it works for me [@Serzhanov](https://github.com/Serzhanov) [@dshwei](https://github.com/dshwei) , hope this work for you too :)\n\nI still met the same bug after downgrading datasets version to 2.20.0. Moreover, it is not friendly to Open-R1 since there can be another bug: `open-r1 0.1.0.dev0 requires datasets>=3.2.0` with datasets==2.20.0", "> > > datasets\n> > \n> > \n> > Hi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n> > ![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)\n> \n> Hi, have you resolved this problem? I meet the same bug when evaluating the ’Open-R1’, too. Looking forward to your reply!\n\nHi, I still cannot solve this bug introduced from datasets version. Downgrading datasets version to 2.20.0 cannot work for me and it introduces another problem `open-r1 0.1.0.dev0 requires datasets>=3.2.0` in Open-R1.\n\nLuckily, there is a tricky way to enable you to run Open-R1. You can remove or comment the code related to `lcb` in `~/anaconda3/envs/openr1/lib/python3.11/site-packages/lighteval/tasks/extended/__init__.py`. I have reproduce the results of DeepSeek-R1-Distill-Qwen-1.5B and 7B on MATH-500, GPQA, and AIME24.\n\nYou can have a try~", "The issue was resolved .\nbecause the file` livecodebench/code_generation_lite/code_generation_lite.py `was not downloaded. Manually downloading it fixed the problem." ]
2025-02-27T07:36:02Z
2025-03-27T05:05:33Z
null
NONE
null
null
null
null
### Describe the bug from datasets import load_dataset lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") or configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) both error: Traceback (most recent call last): File "", line 1, in File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 2131, in load_dataset builder_instance = load_dataset_builder( File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 1888, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( TypeError: 'NoneType' object is not callable ### Steps to reproduce the bug from datasets import get_dataset_config_names configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) OR lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") ### Expected behavior load datasets livecodebench/code_generation_lite ### Environment info import datasets version '3.3.2'
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7425/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7425/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7423
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7423/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7423/comments
https://api.github.com/repos/huggingface/datasets/issues/7423/events
https://github.com/huggingface/datasets/issues/7423
2,879,271,409
I_kwDODunzps6rnjHx
7,423
Row indexing a dataset with numpy integers
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Would be cool to be consistent when it comes to indexing with numpy objects, if we do accept numpy arrays we should indeed accept numpy integers. Your idea sounds reasonable, I'd also be in favor of adding a simple test as well" ]
2025-02-25T18:44:45Z
2025-07-28T02:23:17Z
2025-07-28T02:23:17Z
CONTRIBUTOR
null
null
null
null
### Feature request Allow indexing datasets with a scalar numpy integer type. ### Motivation Indexing a dataset with a scalar numpy.int* object raises a TypeError. This is due to the test in `datasets/formatting/formatting.py:key_to_query_type` ``` python def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` In the row case, it checks if key is an int, which returns false when key is integer like but not a builtin python integer type. This is counterintuitive because a numpy array of np.int64s can be used for the batch case. For example: ``` python import numpy as np import datasets dataset = datasets.Dataset.from_dict({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}) # Regular indexing dataset[0] dataset[:2] # Indexing with numpy data types (expect same results) idx = np.asarray([0, 1]) dataset[idx] # Succeeds when using an array of np.int64 values dataset[idx[0]] # Fails with TypeError when using scalar np.int64 ``` For the user, this can be solved by wrapping `idx[0]` in `int` but the test could also be changed in `key_to_query_type` to accept a less strict definition of int. ``` diff +import numbers + def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: + if isinstance(key, numbers.Integral): - if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` Looking at how others do it, pandas has an `is_integer` definition that it checks which uses `is_integer_object` defined in `pandas/_libs/utils.pxd`: ``` cython cdef inline bint is_integer_object(object obj) noexcept: """ Cython equivalent of `isinstance(val, (int, np.integer)) and not isinstance(val, (bool, np.timedelta64))` Parameters ---------- val : object Returns ------- is_integer : bool Notes ----- This counts np.timedelta64 objects as integers. """ return (not PyBool_Check(obj) and isinstance(obj, (int, cnp.integer)) and not is_timedelta64_object(obj)) ``` This would be less flexible as it explicitly checks for numpy integer, but worth noting that they had the need to ensure the key is not a bool. ### Your contribution I can submit a pull request with the above changes after checking that indexing succeeds with the numpy integer type. Or if there is a different integer check that would be preferred I could add that. If there is a reason not to want this behavior that is fine too.
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7423/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7423/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7421
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7421/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7421/comments
https://api.github.com/repos/huggingface/datasets/issues/7421/events
https://github.com/huggingface/datasets/issues/7421
2,878,369,052
I_kwDODunzps6rkG0c
7,421
DVC integration broken
{ "avatar_url": "https://avatars.githubusercontent.com/u/34747372?v=4", "events_url": "https://api.github.com/users/maxstrobel/events{/privacy}", "followers_url": "https://api.github.com/users/maxstrobel/followers", "following_url": "https://api.github.com/users/maxstrobel/following{/other_user}", "gists_url": "https://api.github.com/users/maxstrobel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maxstrobel", "id": 34747372, "login": "maxstrobel", "node_id": "MDQ6VXNlcjM0NzQ3Mzcy", "organizations_url": "https://api.github.com/users/maxstrobel/orgs", "received_events_url": "https://api.github.com/users/maxstrobel/received_events", "repos_url": "https://api.github.com/users/maxstrobel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maxstrobel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxstrobel/subscriptions", "type": "User", "url": "https://api.github.com/users/maxstrobel", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Unfortunately `url` is a reserved argument in `fsspec.url_to_fs`, so ideally file system implementations like DVC should use another argument name to avoid this kind of errors" ]
2025-02-25T13:14:31Z
2025-03-03T17:42:02Z
null
NONE
null
null
null
null
### Describe the bug The DVC integration seems to be broken. Followed this guide: https://dvc.org/doc/user-guide/integrations/huggingface ### Steps to reproduce the bug #### Script to reproduce ~~~python from datasets import load_dataset dataset = load_dataset( "csv", data_files="dvc://workshop/satellite-data/jan_train.csv", storage_options={"url": "https://github.com/iterative/dataset-registry.git"}, ) print(dataset) ~~~ #### Error log ~~~ Traceback (most recent call last): File "C:\tmp\test\load.py", line 3, in <module> dataset = load_dataset( ^^^^^^^^^^^^^ File "C:\tmp\test\.venv\Lib\site-packages\datasets\load.py", line 2151, in load_dataset builder_instance.download_and_prepare( File "C:\tmp\test\.venv\Lib\site-packages\datasets\builder.py", line 808, in download_and_prepare fs, output_dir = url_to_fs(output_dir, **(storage_options or {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: url_to_fs() got multiple values for argument 'url' ~~~ ### Expected behavior Integration would work and the indicated file is downloaded and opened. ### Environment info #### Python version ~~~ python --version Python 3.11.10 ~~~ #### Venv (pip install datasets dvc): ~~~ Package Version ---------------------- ----------- aiohappyeyeballs 2.4.6 aiohttp 3.11.13 aiohttp-retry 2.9.1 aiosignal 1.3.2 amqp 5.3.1 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 appdirs 1.4.4 asyncssh 2.20.0 atpublic 5.1 attrs 25.1.0 billiard 4.2.1 celery 5.4.0 certifi 2025.1.31 cffi 1.17.1 charset-normalizer 3.4.1 click 8.1.8 click-didyoumean 0.3.1 click-plugins 1.1.1 click-repl 0.3.0 colorama 0.4.6 configobj 5.0.9 cryptography 44.0.1 datasets 3.3.2 dictdiffer 0.9.0 dill 0.3.8 diskcache 5.6.3 distro 1.9.0 dpath 2.2.0 dulwich 0.22.7 dvc 3.59.1 dvc-data 3.16.9 dvc-http 2.32.0 dvc-objects 5.1.0 dvc-render 1.0.2 dvc-studio-client 0.21.0 dvc-task 0.40.2 entrypoints 0.4 filelock 3.17.0 flatten-dict 0.4.2 flufl-lock 8.1.0 frozenlist 1.5.0 fsspec 2024.12.0 funcy 2.0 gitdb 4.0.12 gitpython 3.1.44 grandalf 0.8 gto 1.7.2 huggingface-hub 0.29.1 hydra-core 1.3.2 idna 3.10 iterative-telemetry 0.0.10 kombu 5.4.2 markdown-it-py 3.0.0 mdurl 0.1.2 multidict 6.1.0 multiprocess 0.70.16 networkx 3.4.2 numpy 2.2.3 omegaconf 2.3.0 orjson 3.10.15 packaging 24.2 pandas 2.2.3 pathspec 0.12.1 platformdirs 4.3.6 prompt-toolkit 3.0.50 propcache 0.3.0 psutil 7.0.0 pyarrow 19.0.1 pycparser 2.22 pydantic 2.10.6 pydantic-core 2.27.2 pydot 3.0.4 pygit2 1.17.0 pygments 2.19.1 pygtrie 2.5.0 pyparsing 3.2.1 python-dateutil 2.9.0.post0 pytz 2025.1 pywin32 308 pyyaml 6.0.2 requests 2.32.3 rich 13.9.4 ruamel-yaml 0.18.10 ruamel-yaml-clib 0.2.12 scmrepo 3.3.10 semver 3.0.4 setuptools 75.8.0 shellingham 1.5.4 shortuuid 1.0.13 shtab 1.7.1 six 1.17.0 smmap 5.0.2 sqltrie 0.11.2 tabulate 0.9.0 tomlkit 0.13.2 tqdm 4.67.1 typer 0.15.1 typing-extensions 4.12.2 tzdata 2025.1 urllib3 2.3.0 vine 5.1.0 voluptuous 0.15.2 wcwidth 0.2.13 xxhash 3.5.0 yarl 1.18.3 zc-lockfile 3.0.post1 ~~~
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7421/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7421/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7420/comments
https://api.github.com/repos/huggingface/datasets/issues/7420/events
https://github.com/huggingface/datasets/issues/7420
2,876,281,928
I_kwDODunzps6rcJRI
7,420
better correspondence between cached and saved datasets created using from_generator
{ "avatar_url": "https://avatars.githubusercontent.com/u/12157034?v=4", "events_url": "https://api.github.com/users/vttrifonov/events{/privacy}", "followers_url": "https://api.github.com/users/vttrifonov/followers", "following_url": "https://api.github.com/users/vttrifonov/following{/other_user}", "gists_url": "https://api.github.com/users/vttrifonov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vttrifonov", "id": 12157034, "login": "vttrifonov", "node_id": "MDQ6VXNlcjEyMTU3MDM0", "organizations_url": "https://api.github.com/users/vttrifonov/orgs", "received_events_url": "https://api.github.com/users/vttrifonov/received_events", "repos_url": "https://api.github.com/users/vttrifonov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vttrifonov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vttrifonov/subscriptions", "type": "User", "url": "https://api.github.com/users/vttrifonov", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2025-02-24T22:14:37Z
2025-02-26T03:10:22Z
null
CONTRIBUTOR
null
null
null
null
### Feature request At the moment `.from_generator` can only create a dataset that lives in the cache. The cached dataset cannot be loaded with `load_from_disk` because the cache folder is missing `state.json`. So the only way to convert this cached dataset to a regular is to use `save_to_disk` which needs to create a copy of the cached dataset. For large datasets this can end up wasting a lot of space. In my case the saving operation failed so I am stuck with a large cached dataset and no clear way to convert to a `Dataset` that I can use. The requested feature is to provide a way to be able to load a cached dataset using `.load_from_disk`. Alternatively `.from_generator` can create the dataset at a specified location so that it can be loaded from there with `.load_from_disk`. ### Motivation I have the following workflow which has exposed some awkwardness about the Datasets saving/caching. 1. I created a cached dataset using `.from_generator` which was cached in a folder. This dataset is rather large (~600GB) with many shards. 2. I tried to save this dataset using `.save_to_disk` to another location so that I can use later as a `Dataset`. This essentially creates another copy (for a total of 1.2TB!) of what is already in the cache... In my case the saving operation keeps dying for some reason and I am stuck with a cached dataset and no copy. 3. Now I am trying to "save" the existing cached dataset but it is not clear how to access the cached files after `.from_generator` has finished e.g. from a different process. I should not be even looking at the cache but I really do not want to waste another 2hr to generate the set so that if fails agains (I already did this couple of times). - I tried `.load_from_disk` but it does not work with cached files and complains that this is not a `Dataset` (!). - I looked at `.from_file` which takes one file but the cached file has many (shards) so I am not sure how to make this work. - I tried `.load_dataset` but this seems to either try to "download" a copy (of a file which is already in the local file system!) which I will then need to save or I need to use `streaming=False` to create an `IterableDataset `which then I need to convert (using the cache) to `Dataset` so that I can save it. With both options I will end up with 3 copies of the same dataset for a total of ~2TB! I am hoping here is another way to do this... Maybe I am missing something here: I looked at docs and forums but no luck. I have a bunch of arrow files cached by `Dataset.from_generator` and no clean way to make them into a `Dataset` that I can use. This all could be so much easer if `load_from_disk` can recognize the cached files and produce a `Dataset`: after the cache is created I would not have to "save" it again and I can just load it when I need. At the moment `load_from_disk` needs `state.json` which is lacking in the cache folder. So perhaps `.from_generator` could be made to "finalize" (e.g. create `state.json`) the dataset once it is done so that it can be loaded easily. Or provide `.from_generator` with a `save_to_dir` parameter in addition to `cache_dir` which can be used for the whole process including creating the `state.json` at the end. As a proof of concept I just created `state.json` by hand and `load_from_disk` worked using the cache! So it seems to be the missing piece here. ### Your contribution Time permitting I can look into `.from_generator` to see if adding `state.json` is feasible.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7420/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7419/comments
https://api.github.com/repos/huggingface/datasets/issues/7419/events
https://github.com/huggingface/datasets/issues/7419
2,875,635,320
I_kwDODunzps6rZrZ4
7,419
Import order crashes script execution
{ "avatar_url": "https://avatars.githubusercontent.com/u/23298479?v=4", "events_url": "https://api.github.com/users/DamienMatias/events{/privacy}", "followers_url": "https://api.github.com/users/DamienMatias/followers", "following_url": "https://api.github.com/users/DamienMatias/following{/other_user}", "gists_url": "https://api.github.com/users/DamienMatias/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DamienMatias", "id": 23298479, "login": "DamienMatias", "node_id": "MDQ6VXNlcjIzMjk4NDc5", "organizations_url": "https://api.github.com/users/DamienMatias/orgs", "received_events_url": "https://api.github.com/users/DamienMatias/received_events", "repos_url": "https://api.github.com/users/DamienMatias/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DamienMatias/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DamienMatias/subscriptions", "type": "User", "url": "https://api.github.com/users/DamienMatias", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-24T17:03:43Z
2025-02-24T17:03:43Z
null
NONE
null
null
null
null
### Describe the bug Hello, I'm trying to convert an HF dataset into a TFRecord so I'm importing `tensorflow` and `datasets` to do so. Depending in what order I'm importing those librairies, my code hangs forever and is unkillable (CTRL+C doesn't work, I need to kill my shell entirely). Thank you for your help 🙏 ### Steps to reproduce the bug If you run the following script, this will hang forever : ```python import tensorflow as tf import datasets dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` however running the following will work fine (I just changed the order of the imports) : ```python import datasets import tensorflow as tf dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` ### Expected behavior I'm expecting the script to reach the end and my case print the content of the first item in the dataset ``` {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=408x500 at 0x70C646A03110>, 'label': 91} ``` ### Environment info ``` $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-6.8.0-1017-aws-x86_64-with-glibc2.35 - Python version: 3.11.7 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ``` I'm also using `tensorflow==2.18.0`.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7419/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7419/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7418
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7418/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7418/comments
https://api.github.com/repos/huggingface/datasets/issues/7418/events
https://github.com/huggingface/datasets/issues/7418
2,868,701,471
I_kwDODunzps6q_Okf
7,418
pyarrow.lib.arrowinvalid: cannot mix list and non-list, non-null values with map function
{ "avatar_url": "https://avatars.githubusercontent.com/u/15705569?v=4", "events_url": "https://api.github.com/users/alexxchen/events{/privacy}", "followers_url": "https://api.github.com/users/alexxchen/followers", "following_url": "https://api.github.com/users/alexxchen/following{/other_user}", "gists_url": "https://api.github.com/users/alexxchen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alexxchen", "id": 15705569, "login": "alexxchen", "node_id": "MDQ6VXNlcjE1NzA1NTY5", "organizations_url": "https://api.github.com/users/alexxchen/orgs", "received_events_url": "https://api.github.com/users/alexxchen/received_events", "repos_url": "https://api.github.com/users/alexxchen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alexxchen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexxchen/subscriptions", "type": "User", "url": "https://api.github.com/users/alexxchen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@lhoestq ", "Can you try passing text: None for the image object ? Pyarrow expects all the objects to have the exact same type, in particular the dicttionaries in \"content\" should all have the keys \"type\" and \"text\"", "The following modification on system prompt works, but it is different from the usual way to use it.\n```\ndef make_conversation(example):\n prompt = []\n\n prompt.append({\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": system_prompt}]})\n prompt.append(\n {\n \"role\": \"user\", \n \"content\": [\n {\"type\": \"image\"},\n {\"type\": \"text\", \"text\": example[\"problem\"]},\n ]\n }\n )\n return {\"prompt\": prompt}\n```", "Good to know ! But yes Arrow / Parquet have this typing limitation (which is great to ensure data integrity, but constraining at the same time). It's is really blocking you, feel free to ping the arrow team / community if they plan to have a Union type or a JSON type", "I encounter exactly the similar problem when using pyarrow. This issue truly helps a lot." ]
2025-02-21T10:58:06Z
2025-07-11T13:06:10Z
null
NONE
null
null
null
null
### Describe the bug Encounter pyarrow.lib.arrowinvalid error with map function in some example when loading the dataset ### Steps to reproduce the bug ``` from datasets import load_dataset from PIL import Image, PngImagePlugin dataset = load_dataset("leonardPKU/GEOQA_R1V_Train_8K") system_prompt="You are a helpful AI Assistant" def make_conversation(example): prompt = [] prompt.append({"role": "system", "content": system_prompt}) prompt.append( { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": example["problem"]}, ] } ) return {"prompt": prompt} def check_data_types(example): for key, value in example.items(): if key == 'image': if not isinstance(value, PngImagePlugin.PngImageFile): print(value) if key == "problem" or key == "solution": if not isinstance(value, str): print(value) return example dataset = dataset.map(check_data_types) dataset = dataset.map(make_conversation) ``` ### Expected behavior Successfully process the dataset with map ### Environment info datasets==3.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7418/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7418/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7415
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7415/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7415/comments
https://api.github.com/repos/huggingface/datasets/issues/7415/events
https://github.com/huggingface/datasets/issues/7415
2,865,774,546
I_kwDODunzps6q0D_S
7,415
Shard Dataset at specific indices
{ "avatar_url": "https://avatars.githubusercontent.com/u/11044035?v=4", "events_url": "https://api.github.com/users/nikonikolov/events{/privacy}", "followers_url": "https://api.github.com/users/nikonikolov/followers", "following_url": "https://api.github.com/users/nikonikolov/following{/other_user}", "gists_url": "https://api.github.com/users/nikonikolov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikonikolov", "id": 11044035, "login": "nikonikolov", "node_id": "MDQ6VXNlcjExMDQ0MDM1", "organizations_url": "https://api.github.com/users/nikonikolov/orgs", "received_events_url": "https://api.github.com/users/nikonikolov/received_events", "repos_url": "https://api.github.com/users/nikonikolov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikonikolov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikonikolov/subscriptions", "type": "User", "url": "https://api.github.com/users/nikonikolov", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! if it's an option I'd suggest to have one sequence per row instead.\n\nOtherwise you'd have to make your own save/load mechanism", "Saving one sequence per row is very difficult and heavy and makes all the optimizations pointless. How would a custom save/load mechanism look like?", "You can use `pyarrow` for example to save/load individual arrow or parquet files and control what they contain" ]
2025-02-20T10:43:10Z
2025-02-24T11:06:45Z
null
NONE
null
null
null
null
I have a dataset of sequences, where each example in the sequence is a separate row in the dataset (similar to LeRobotDataset). When running `Dataset.save_to_disk` how can I provide indices where it's possible to shard the dataset such that no episode spans more than 1 shard. Consequently, when I run `Dataset.load_from_disk`, how can I load just a subset of the shards to save memory and time on different ranks? I guess an alternative to this would be, given a loaded `Dataset`, how can I run `Dataset.shard` such that sharding doesn't split any episode across shards?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7415/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7415/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7413
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7413/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7413/comments
https://api.github.com/repos/huggingface/datasets/issues/7413/events
https://github.com/huggingface/datasets/issues/7413
2,860,947,582
I_kwDODunzps6qhph-
7,413
Documentation on multiple media files of the same type with WebDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4", "events_url": "https://api.github.com/users/DCNemesis/events{/privacy}", "followers_url": "https://api.github.com/users/DCNemesis/followers", "following_url": "https://api.github.com/users/DCNemesis/following{/other_user}", "gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DCNemesis", "id": 3616964, "login": "DCNemesis", "node_id": "MDQ6VXNlcjM2MTY5NjQ=", "organizations_url": "https://api.github.com/users/DCNemesis/orgs", "received_events_url": "https://api.github.com/users/DCNemesis/received_events", "repos_url": "https://api.github.com/users/DCNemesis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions", "type": "User", "url": "https://api.github.com/users/DCNemesis", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Yes this is correct and it works with huggingface datasets as well ! Feel free to include an example here: https://github.com/huggingface/datasets/blob/main/docs/source/video_dataset.mdx" ]
2025-02-18T16:13:20Z
2025-02-20T14:17:54Z
null
NONE
null
null
null
null
The [current documentation](https://huggingface.co/docs/datasets/en/video_dataset) on a creating a video dataset includes only examples with one media file and one json. It would be useful to have examples where multiple files of the same type are included. For example, in a sign language dataset, you may have a base video and a video annotation of the extracted pose. According to the WebDataset documentation, this should be able to be done with period separated filenames. For example: ```e39871fd9fd74f55.base.mp4 e39871fd9fd74f55.pose.mp4 e39871fd9fd74f55.json f18b91585c4d3f3e.base.mp4 f18b91585c4d3f3e.pose.mp4 f18b91585c4d3f3e.json ... ``` If you can confirm that this method of including multiple media files works with huggingface datasets and include an example in the documentation, I'd appreciate it.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7413/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7413/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7412
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7412/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7412/comments
https://api.github.com/repos/huggingface/datasets/issues/7412/events
https://github.com/huggingface/datasets/issues/7412
2,859,433,710
I_kwDODunzps6qb37u
7,412
Index Error Invalid Ket is out of bounds for size 0 for code-search-net/code_search_net dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/56113657?v=4", "events_url": "https://api.github.com/users/harshakhmk/events{/privacy}", "followers_url": "https://api.github.com/users/harshakhmk/followers", "following_url": "https://api.github.com/users/harshakhmk/following{/other_user}", "gists_url": "https://api.github.com/users/harshakhmk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/harshakhmk", "id": 56113657, "login": "harshakhmk", "node_id": "MDQ6VXNlcjU2MTEzNjU3", "organizations_url": "https://api.github.com/users/harshakhmk/orgs", "received_events_url": "https://api.github.com/users/harshakhmk/received_events", "repos_url": "https://api.github.com/users/harshakhmk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/harshakhmk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harshakhmk/subscriptions", "type": "User", "url": "https://api.github.com/users/harshakhmk", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-18T05:58:33Z
2025-02-18T06:42:07Z
null
NONE
null
null
null
null
### Describe the bug I am trying to do model pruning on sentence-transformers/all-mini-L6-v2 for the code-search-net/code_search_net dataset using INCTrainer class However I am getting below error ``` raise IndexError(f"Invalid Key: {key is our of bounds for size {size}") IndexError: Invalid key: 1840208 is out of bounds for size 0 ``` ### Steps to reproduce the bug Model pruning on the above dataset using the below guide https://huggingface.co/docs/optimum/en/intel/neural_compressor/optimization#pruning ### Expected behavior The modsl should be successfully pruned ### Environment info Torch version: 2.4.1 Python version: 3.8.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7412/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7412/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7406
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7406/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7406/comments
https://api.github.com/repos/huggingface/datasets/issues/7406/events
https://github.com/huggingface/datasets/issues/7406
2,856,441,206
I_kwDODunzps6qQdV2
7,406
Adding Core Maintainer List to CONTRIBUTING.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "@lhoestq", "there is no per-module maintainer and the list is me alone nowadays ^^'", "@lhoestq \nOh... I feel for you. \nWhat are your criteria for choosing a core maintainer? \nIt seems like it's too much work for you to manage all this code by yourself.\n\nAlso, if you don't mind, can you check this PR for me?\n#7368 I'd like this to be added as soon as possible because I need it." ]
2025-02-17T00:32:40Z
2025-03-24T10:57:54Z
2025-03-24T10:57:54Z
CONTRIBUTOR
null
null
null
null
### Feature request I propose adding a core maintainer list to the `CONTRIBUTING.md` file. ### Motivation The Transformers and Liger-Kernel projects maintain lists of core maintainers for each module. However, the Datasets project doesn't have such a list. ### Your contribution I have nothing to add here.
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7406/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7406/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7405/comments
https://api.github.com/repos/huggingface/datasets/issues/7405/events
https://github.com/huggingface/datasets/issues/7405
2,856,372,814
I_kwDODunzps6qQMpO
7,405
Lazy loading of environment variables
{ "avatar_url": "https://avatars.githubusercontent.com/u/7225987?v=4", "events_url": "https://api.github.com/users/nikvaessen/events{/privacy}", "followers_url": "https://api.github.com/users/nikvaessen/followers", "following_url": "https://api.github.com/users/nikvaessen/following{/other_user}", "gists_url": "https://api.github.com/users/nikvaessen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikvaessen", "id": 7225987, "login": "nikvaessen", "node_id": "MDQ6VXNlcjcyMjU5ODc=", "organizations_url": "https://api.github.com/users/nikvaessen/orgs", "received_events_url": "https://api.github.com/users/nikvaessen/received_events", "repos_url": "https://api.github.com/users/nikvaessen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikvaessen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikvaessen/subscriptions", "type": "User", "url": "https://api.github.com/users/nikvaessen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Many python packages out there, including `huggingface_hub`, do load the environment variables on import.\nYou should `load_dotenv()` before importing the libraries.\n\nFor example you can move all you imports inside your `main()` function" ]
2025-02-16T22:31:41Z
2025-02-17T15:17:18Z
null
NONE
null
null
null
null
### Describe the bug Loading a `.env` file after an `import datasets` call does not correctly use the environment variables. This is due the fact that environment variables are read at import time: https://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/config.py#L155C1-L155C80 ### Steps to reproduce the bug ```bash # make tmp dir mkdir -p /tmp/debug-env # make .env file echo HF_HOME=/tmp/debug-env/data > /tmp/debug-env/.env # first load dotenv, downloads to /tmp/debug-env/data uv run --with datasets,python-dotenv python3 -c \ 'import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); import datasets; datasets.load_dataset("Anthropic/hh-rlhf")' # first import datasets, downloads to `~/.cache/huggingface` uv run --with datasets,python-dotenv python3 -c \ 'import datasets; import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); datasets.load_dataset("Anthropic/hh-rlhf")' ``` ### Expected behavior I expect that setting environment variables with something like this: ```python3 if __name__ == "__main__": load_dotenv() main() ``` works correctly. ### Environment info "datasets>=3.3.0",
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7405/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7405/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7404
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7404/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7404/comments
https://api.github.com/repos/huggingface/datasets/issues/7404/events
https://github.com/huggingface/datasets/issues/7404
2,856,366,207
I_kwDODunzps6qQLB_
7,404
Performance regression in `dataset.filter`
{ "avatar_url": "https://avatars.githubusercontent.com/u/82200?v=4", "events_url": "https://api.github.com/users/ttim/events{/privacy}", "followers_url": "https://api.github.com/users/ttim/followers", "following_url": "https://api.github.com/users/ttim/following{/other_user}", "gists_url": "https://api.github.com/users/ttim/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ttim", "id": 82200, "login": "ttim", "node_id": "MDQ6VXNlcjgyMjAw", "organizations_url": "https://api.github.com/users/ttim/orgs", "received_events_url": "https://api.github.com/users/ttim/received_events", "repos_url": "https://api.github.com/users/ttim/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ttim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ttim/subscriptions", "type": "User", "url": "https://api.github.com/users/ttim", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "Thanks for reporting, I'll fix the regression today", "I just released `datasets` 3.3.1 with a fix, let me know if it's good now :)", "@lhoestq it fixed the issue.\n\nThis was (very) fast, thank you very much!" ]
2025-02-16T22:19:14Z
2025-02-17T17:46:06Z
2025-02-17T14:28:48Z
NONE
null
null
null
null
### Describe the bug We're filtering dataset of ~1M (small-ish) records. At some point in the code we do `dataset.filter`, before (including 3.2.0) it was taking couple of seconds, and now it takes 4 hours. We use 16 threads/workers, and stack trace at them look as follows: ``` Traceback (most recent call last): File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 314, in _bootstrap self.run() File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/python/lib/python3.12/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) ^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 678, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3511, in _map_single for i, batch in iter_outputs(shard_iterable): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3461, in iter_outputs yield i, apply_function(example, i, offset=offset) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3390, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 6416, in get_indices_from_mask_function indices_array = indices_mapping.column(0).take(indices_array) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 1079, in pyarrow.lib.ChunkedArray.take File "/python/lib/python3.12/site-packages/pyarrow/compute.py", line 458, in take def take(data, indices, *, boundscheck=True, memory_pool=None): ``` ### Steps to reproduce the bug 1. Save dataset of 1M records in arrow 2. Filter it with 16 threads 3. Watch it take too long ### Expected behavior Filtering done fast ### Environment info datasets 3.3.0, python 3.12
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7404/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7404/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7399
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7399/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7399/comments
https://api.github.com/repos/huggingface/datasets/issues/7399/events
https://github.com/huggingface/datasets/issues/7399
2,853,098,442
I_kwDODunzps6qDtPK
7,399
Synchronize parameters for various datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/7976840?v=4", "events_url": "https://api.github.com/users/grofte/events{/privacy}", "followers_url": "https://api.github.com/users/grofte/followers", "following_url": "https://api.github.com/users/grofte/following{/other_user}", "gists_url": "https://api.github.com/users/grofte/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/grofte", "id": 7976840, "login": "grofte", "node_id": "MDQ6VXNlcjc5NzY4NDA=", "organizations_url": "https://api.github.com/users/grofte/orgs", "received_events_url": "https://api.github.com/users/grofte/received_events", "repos_url": "https://api.github.com/users/grofte/repos", "site_admin": false, "starred_url": "https://api.github.com/users/grofte/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grofte/subscriptions", "type": "User", "url": "https://api.github.com/users/grofte", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! the `desc` parameter is only available for Dataset / DatasetDict for the progress bar of `map()``\n\nSince IterableDataset only runs the map functions when you iterate over the dataset, there is no progress bar and `desc` is useless. We could still add the argument for parity but it wouldn't be used for anything", "I think you should add it. It doesn't hurt. The reason I ran into it was because I re-wrote a pipeline to use either a stream or a fully loaded dataset. Of course I can simply remove it but it is nice to have on the memory loaded dataset. " ]
2025-02-14T09:15:11Z
2025-02-19T11:50:29Z
null
NONE
null
null
null
null
### Describe the bug [IterableDatasetDict](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.IterableDatasetDict.map) map function is missing the `desc` parameter. You can see the equivalent map function for [Dataset here](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.Dataset.map). There might be other parameters missing - I haven't checked. ### Steps to reproduce the bug from datasets import Dataset, IterableDataset, IterableDatasetDict ds = IterableDatasetDict({"train": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3), "validate": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)}) for d in ds["train"]: print(d) ds = ds.map(lambda x: {k: v+1 for k, v in x.items()}, desc="increment") for d in ds["train"]: print(d) ### Expected behavior The description parameter should be available for all datasets (or none). ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7399/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7399/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7400/comments
https://api.github.com/repos/huggingface/datasets/issues/7400/events
https://github.com/huggingface/datasets/issues/7400
2,853,201,277
I_kwDODunzps6qEGV9
7,400
504 Gateway Timeout when uploading large dataset to Hugging Face Hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/3500?v=4", "events_url": "https://api.github.com/users/hotchpotch/events{/privacy}", "followers_url": "https://api.github.com/users/hotchpotch/followers", "following_url": "https://api.github.com/users/hotchpotch/following{/other_user}", "gists_url": "https://api.github.com/users/hotchpotch/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hotchpotch", "id": 3500, "login": "hotchpotch", "node_id": "MDQ6VXNlcjM1MDA=", "organizations_url": "https://api.github.com/users/hotchpotch/orgs", "received_events_url": "https://api.github.com/users/hotchpotch/received_events", "repos_url": "https://api.github.com/users/hotchpotch/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hotchpotch/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hotchpotch/subscriptions", "type": "User", "url": "https://api.github.com/users/hotchpotch", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I transferred to the `datasets` repository. Is there any retry mechanism in `datasets` @lhoestq ?\n\nAnother solution @hotchpotch if you want to get your dataset pushed to the Hub in a robust way is to save it to a local folder first and then use `huggingface-cli upload-large-folder` (see https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-large-folder). It has better retry mechanism in case of failure.", "There is no retry mechanism for `api.preupload_lfs_files` in `push_to_hub()` but we can definitely add one here\n\nhttps://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/arrow_dataset.py#L5372", "@Wauplin \n\nThank you! I believe that to use load_dataset() to read data from Hugging Face, we need to first save the markdown metadata and parquet files in our local filesystem, then upload them using upload-large-folder. If you know how to do this, could you please let me know?\n\n", "@lhoestq \n\nI see, so adding a retry mechanism there would solve it. If I continue to have issues, I'll consider implementing that kind of solution." ]
2025-02-14T02:18:35Z
2025-02-14T23:48:36Z
null
NONE
null
null
null
null
### Description I encountered consistent 504 Gateway Timeout errors while attempting to upload a large dataset (approximately 500GB) to the Hugging Face Hub. The upload fails during the process with a Gateway Timeout error. I will continue trying to upload. While it might succeed in future attempts, I wanted to report this issue in the meantime. ### Reproduction - I attempted the upload 3 times - Each attempt resulted in the same 504 error during the upload process (not at the start, but in the middle of the upload) - Using `dataset.push_to_hub()` method ### Environment Information ``` - huggingface_hub version: 0.28.0 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.39 - Python version: 3.11.10 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Running in Google Colab Enterprise ?: No - Token path ?: /home/hotchpotch/.cache/huggingface/token - Has saved token ?: True - Who am I ?: hotchpotch - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.5.1 - Jinja2: 3.1.5 - Graphviz: N/A - keras: N/A - Pydot: N/A - Pillow: 10.4.0 - hf_transfer: N/A - gradio: N/A - tensorboard: N/A - numpy: 1.26.4 - pydantic: 2.10.6 - aiohttp: 3.11.11 - ENDPOINT: https://huggingface.co - HF_HUB_CACHE: /home/hotchpotch/.cache/huggingface/hub - HF_ASSETS_CACHE: /home/hotchpotch/.cache/huggingface/assets - HF_TOKEN_PATH: /home/hotchpotch/.cache/huggingface/token - HF_STORED_TOKENS_PATH: /home/hotchpotch/.cache/huggingface/stored_tokens - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False - HF_HUB_ETAG_TIMEOUT: 10 - HF_HUB_DOWNLOAD_TIMEOUT: 10 ``` ### Full Error Traceback ```python Traceback (most recent call last): File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/hotchpotch/fineweb-2-edu-japanese.git/info/lfs/objects/batch The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/create_edu_japanese_ds/upload_edu_japanese_ds.py", line 12, in <module> ds.push_to_hub("hotchpotch/fineweb-2-edu-japanese", private=True) File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/datasets/dataset_dict.py", line 1665, in push_to_hub split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 5301, in _push_parquet_shards_to_hub api.preupload_lfs_files( File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/hf_api.py", line 4215, in preupload_lfs_files _upload_lfs_files( File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/_commit_api.py", line 395, in _upload_lfs_files batch_actions_chunk, batch_errors_chunk = post_lfs_batch_info( ^^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/lfs.py", line 168, in post_lfs_batch_info hf_raise_for_status(resp) File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/hotchpotch/fineweb-2-edu-japanese.git/info/lfs/objects/batch ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7400/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7400/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7394
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7394/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7394/comments
https://api.github.com/repos/huggingface/datasets/issues/7394/events
https://github.com/huggingface/datasets/issues/7394
2,847,172,115
I_kwDODunzps6ptGYT
7,394
Using load_dataset with data_files and split arguments yields an error
{ "avatar_url": "https://avatars.githubusercontent.com/u/61103399?v=4", "events_url": "https://api.github.com/users/devon-research/events{/privacy}", "followers_url": "https://api.github.com/users/devon-research/followers", "following_url": "https://api.github.com/users/devon-research/following{/other_user}", "gists_url": "https://api.github.com/users/devon-research/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/devon-research", "id": 61103399, "login": "devon-research", "node_id": "MDQ6VXNlcjYxMTAzMzk5", "organizations_url": "https://api.github.com/users/devon-research/orgs", "received_events_url": "https://api.github.com/users/devon-research/received_events", "repos_url": "https://api.github.com/users/devon-research/repos", "site_admin": false, "starred_url": "https://api.github.com/users/devon-research/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/devon-research/subscriptions", "type": "User", "url": "https://api.github.com/users/devon-research", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-12T04:50:11Z
2025-02-12T04:50:11Z
null
NONE
null
null
null
null
### Describe the bug It seems the list of valid splits recorded by the package becomes incorrectly overwritten when using the `data_files` argument. If I run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` then I get the error ``` ValueError: Unknown split "all_examples". Should be one of ['train']. ``` However, if I run ```python from datasets import load_dataset load_dataset("allenai/super", split="train", name="Expert") ``` then I get ``` ValueError: Unknown split "train". Should be one of ['all_examples']. ``` ### Steps to reproduce the bug Run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` ### Expected behavior No error. ### Environment info Python = 3.12 datasets = 3.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7394/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7394/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7392/comments
https://api.github.com/repos/huggingface/datasets/issues/7392/events
https://github.com/huggingface/datasets/issues/7392
2,846,095,043
I_kwDODunzps6po_bD
7,392
push_to_hub payload too large error when using large ClassLabel feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "See also <https://discuss.huggingface.co/t/datasetdict-push-to-hub-failing-with-payload-to-large/140083/8>\n" ]
2025-02-11T17:51:34Z
2025-02-11T18:01:31Z
null
CONTRIBUTOR
null
null
null
null
### Describe the bug When using `datasets.DatasetDict.push_to_hub` an `HfHubHTTPError: 413 Client Error: Payload Too Large for url` is raised if the dataset contains a large `ClassLabel` feature. Even if the total size of the dataset is small. ### Steps to reproduce the bug ``` python import random import sys import datasets random.seed(42) def random_str(sz): return "".join(chr(random.randint(ord("a"), ord("z"))) for _ in range(sz)) data = datasets.DatasetDict( { str(i): datasets.Dataset.from_dict( { "label": [list(range(3)) for _ in range(10)], "abstract": [random_str(10_000) for _ in range(10)], }, ) for i in range(3) } ) features = data["1"].features.copy() features["label"] = datasets.Sequence( datasets.ClassLabel(names=[str(i) for i in range(50_000)]) ) data = data.map(lambda examples: {}, features=features) feat_size = sys.getsizeof(data["1"].features["label"].feature.names) print(f"Size of ClassLabel names: {feat_size}") # Size of ClassLabel names: 444376 data.push_to_hub("dconnell/pubtator3_test") ``` Note that this succeeds if `ClassLabel` has fewer names or if `ClassLabel` is replaced with `Value("int64")` ### Expected behavior Should push the dataset to hub. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35 - Python version: 3.12.8 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7392/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7392/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7391/comments
https://api.github.com/repos/huggingface/datasets/issues/7391/events
https://github.com/huggingface/datasets/issues/7391
2,845,184,764
I_kwDODunzps6plhL8
7,391
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
{ "avatar_url": "https://avatars.githubusercontent.com/u/25193686?v=4", "events_url": "https://api.github.com/users/LinXin04/events{/privacy}", "followers_url": "https://api.github.com/users/LinXin04/followers", "following_url": "https://api.github.com/users/LinXin04/following{/other_user}", "gists_url": "https://api.github.com/users/LinXin04/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LinXin04", "id": 25193686, "login": "LinXin04", "node_id": "MDQ6VXNlcjI1MTkzNjg2", "organizations_url": "https://api.github.com/users/LinXin04/orgs", "received_events_url": "https://api.github.com/users/LinXin04/received_events", "repos_url": "https://api.github.com/users/LinXin04/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LinXin04/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LinXin04/subscriptions", "type": "User", "url": "https://api.github.com/users/LinXin04", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-11T12:02:26Z
2025-02-11T12:02:26Z
null
NONE
null
null
null
null
pyarrow 尝试了若干个版本都不可以
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7391/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7391/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7390
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7390/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7390/comments
https://api.github.com/repos/huggingface/datasets/issues/7390/events
https://github.com/huggingface/datasets/issues/7390
2,843,813,365
I_kwDODunzps6pgSX1
7,390
Re-add py.typed
{ "avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4", "events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}", "followers_url": "https://api.github.com/users/NeilGirdhar/followers", "following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}", "gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NeilGirdhar", "id": 730137, "login": "NeilGirdhar", "node_id": "MDQ6VXNlcjczMDEzNw==", "organizations_url": "https://api.github.com/users/NeilGirdhar/orgs", "received_events_url": "https://api.github.com/users/NeilGirdhar/received_events", "repos_url": "https://api.github.com/users/NeilGirdhar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions", "type": "User", "url": "https://api.github.com/users/NeilGirdhar", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "A similar issue was fixed for the `transformers` package, too: https://github.com/huggingface/transformers/pull/37022" ]
2025-02-10T22:12:52Z
2025-08-10T00:51:17Z
null
CONTRIBUTOR
null
null
null
null
### Feature request The motivation for removing py.typed no longer seems to apply. Would a solution like [this one](https://github.com/huggingface/huggingface_hub/pull/2752) work here? ### Motivation MyPy support is broken. As more type checkers come out, such as RedKnot, these may also be broken. It would be good to be PEP 561 compliant as long as it's not too onerous. ### Your contribution I can re-add py.typed, but I don't know how to make sur all of the `__all__` files are provided (although you may not need to with modern PyRight).
null
{ "+1": 11, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 11, "url": "https://api.github.com/repos/huggingface/datasets/issues/7390/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7390/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7389
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7389/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7389/comments
https://api.github.com/repos/huggingface/datasets/issues/7389/events
https://github.com/huggingface/datasets/issues/7389
2,843,592,606
I_kwDODunzps6pfcee
7,389
Getting statistics about filtered examples
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can actually track a running sum in map() or filter() :)\n\n```python\nnum_filtered = 0\n\ndef f(x):\n global num_filtered\n condition = len(x[\"text\"]) < 1000\n if not condition:\n num_filtered += 1\n return condition\n\nds = ds.filter(f)\nprint(num_filtered)\n```\n\nand if you want to use multiprocessing, make sure to use a variable that is shared across processes\n\n\n```python\nfrom multiprocess import Manager\n\nmanager = Manager()\nnum_filtered = manager.Value('i', 0)\n\ndef f(x):\n global num_filtered\n condition = len(x[\"text\"]) < 1000\n if not condition:\n num_filtered.value += 1\n return condition\n\nds = ds.filter(f, num_proc=4)\nprint(num_filtered.value)\n```\n\nPS: `datasets` uses `multiprocess` instead of the `multiprocessing` package to support lambda functions in map() and filter()", "Oh that's great to know!\n\nI guess this value would not be exactly synced with the batch in cases of pre-fetch and shuffle buffers and so on, but that's probably fine. Thanks!" ]
2025-02-10T20:48:29Z
2025-02-11T20:44:15Z
2025-02-11T20:44:13Z
NONE
null
null
null
null
@lhoestq wondering if the team has thought about this and if there are any recommendations? Currently when processing datasets some examples are bound to get filtered out, whether it's due to bad format, or length is too long, or any other custom filters that might be getting applied. Let's just focus on the filter by length for now, since that would be something that gets applied dynamically for each training run. Say we want to show a graph in W&B with the running total of the number of filtered examples so far. What would be a good way to go about hooking this up? Because the map/filter operations happen before the DataLoader batches are created, at training time if we're just grabbing batches from the DataLoader then we won't know how many things have been filtered already. But there's not really a good way to include a 'num_filtered' key into the dataset itself either because dataset map/filter process examples independently and don't have a way to track a running sum. The only approach I can kind of think of is having a 'is_filtered' key in the dataset, and then creating a custom batcher/collator that reads that and tracks the metric?
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7389/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7389/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7388
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7388/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7388/comments
https://api.github.com/repos/huggingface/datasets/issues/7388/events
https://github.com/huggingface/datasets/issues/7388
2,843,188,499
I_kwDODunzps6pd50T
7,388
OSError: [Errno 22] Invalid argument forbidden character
{ "avatar_url": "https://avatars.githubusercontent.com/u/124634542?v=4", "events_url": "https://api.github.com/users/langflogit/events{/privacy}", "followers_url": "https://api.github.com/users/langflogit/followers", "following_url": "https://api.github.com/users/langflogit/following{/other_user}", "gists_url": "https://api.github.com/users/langflogit/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/langflogit", "id": 124634542, "login": "langflogit", "node_id": "U_kgDOB23Frg", "organizations_url": "https://api.github.com/users/langflogit/orgs", "received_events_url": "https://api.github.com/users/langflogit/received_events", "repos_url": "https://api.github.com/users/langflogit/repos", "site_admin": false, "starred_url": "https://api.github.com/users/langflogit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/langflogit/subscriptions", "type": "User", "url": "https://api.github.com/users/langflogit", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can probably copy the dataset in your HF account and rename the files (without having to download them to your disk). Or alternatively feel free to open a Pull Request to this dataset with the renamed file", "Thank you, that will help me work around this problem" ]
2025-02-10T17:46:31Z
2025-02-11T13:42:32Z
2025-02-11T13:42:30Z
NONE
null
null
null
null
### Describe the bug I'm on Windows and i'm trying to load a datasets but i'm having title error because files in the repository are named with charactere like < >which can't be in a name file. Could it be possible to load this datasets but removing those charactere ? ### Steps to reproduce the bug load_dataset("CATMuS/medieval") on Windows ### Expected behavior Making the function to erase the forbidden character to allow loading the datasets who have those characters. ### Environment info - `datasets` version: 3.2.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.12.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/124634542?v=4", "events_url": "https://api.github.com/users/langflogit/events{/privacy}", "followers_url": "https://api.github.com/users/langflogit/followers", "following_url": "https://api.github.com/users/langflogit/following{/other_user}", "gists_url": "https://api.github.com/users/langflogit/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/langflogit", "id": 124634542, "login": "langflogit", "node_id": "U_kgDOB23Frg", "organizations_url": "https://api.github.com/users/langflogit/orgs", "received_events_url": "https://api.github.com/users/langflogit/received_events", "repos_url": "https://api.github.com/users/langflogit/repos", "site_admin": false, "starred_url": "https://api.github.com/users/langflogit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/langflogit/subscriptions", "type": "User", "url": "https://api.github.com/users/langflogit", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7388/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7388/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7387/comments
https://api.github.com/repos/huggingface/datasets/issues/7387/events
https://github.com/huggingface/datasets/issues/7387
2,841,228,048
I_kwDODunzps6pWbMQ
7,387
Dynamic adjusting dataloader sampling weight
{ "avatar_url": "https://avatars.githubusercontent.com/u/72799643?v=4", "events_url": "https://api.github.com/users/whc688/events{/privacy}", "followers_url": "https://api.github.com/users/whc688/followers", "following_url": "https://api.github.com/users/whc688/following{/other_user}", "gists_url": "https://api.github.com/users/whc688/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/whc688", "id": 72799643, "login": "whc688", "node_id": "MDQ6VXNlcjcyNzk5NjQz", "organizations_url": "https://api.github.com/users/whc688/orgs", "received_events_url": "https://api.github.com/users/whc688/received_events", "repos_url": "https://api.github.com/users/whc688/repos", "site_admin": false, "starred_url": "https://api.github.com/users/whc688/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/whc688/subscriptions", "type": "User", "url": "https://api.github.com/users/whc688", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "You mean based on a condition that has to be checked on-the-fly during training ? Otherwise if you know in advance after how many samples you need to change the sampling you can simply concatenate the two mixes", "Yes, like during training, if one data sample's prediction is consistently wrong, its sampling weight gets higher and higher, and if one data sample's prediction is already correct, then we rarely sample it", "it's not possible to use `interleave_datasets()` and modify the probabilities while iterating on the dataset at the moment, so you'd have to implement your own torch `Sampler` or your own`IterableDataset` to implement this logic" ]
2025-02-10T03:18:47Z
2025-03-07T14:06:54Z
null
NONE
null
null
null
null
Hi, Thanks for your wonderful work! I'm wondering is there a way to dynamically adjust the sampling weight of each data in the dataset during training? Looking forward to your reply, thanks again.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7387/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7387/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7386
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7386/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7386/comments
https://api.github.com/repos/huggingface/datasets/issues/7386/events
https://github.com/huggingface/datasets/issues/7386
2,840,032,524
I_kwDODunzps6pR3UM
7,386
Add bookfolder Dataset Builder for Digital Book Formats
{ "avatar_url": "https://avatars.githubusercontent.com/u/22115108?v=4", "events_url": "https://api.github.com/users/shikanime/events{/privacy}", "followers_url": "https://api.github.com/users/shikanime/followers", "following_url": "https://api.github.com/users/shikanime/following{/other_user}", "gists_url": "https://api.github.com/users/shikanime/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shikanime", "id": 22115108, "login": "shikanime", "node_id": "MDQ6VXNlcjIyMTE1MTA4", "organizations_url": "https://api.github.com/users/shikanime/orgs", "received_events_url": "https://api.github.com/users/shikanime/received_events", "repos_url": "https://api.github.com/users/shikanime/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shikanime/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shikanime/subscriptions", "type": "User", "url": "https://api.github.com/users/shikanime", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "On second thought, probably not a good idea." ]
2025-02-08T14:27:55Z
2025-02-08T14:30:10Z
2025-02-08T14:30:09Z
NONE
null
null
null
null
### Feature request This feature proposes adding a new dataset builder called bookfolder to the datasets library. This builder would allow users to easily load datasets consisting of various digital book formats, including: AZW, AZW3, CB7, CBR, CBT, CBZ, EPUB, MOBI, and PDF. ### Motivation Currently, loading datasets of these digital book files requires manual effort. This would also lower the barrier to entry for working with these formats, enabling more diverse and interesting datasets to be used within the Hugging Face ecosystem. ### Your contribution This feature is rather simple as it will be based on the folder-based builder, similar to imagefolder. I'm willing to contribute to this feature by submitting a PR
{ "avatar_url": "https://avatars.githubusercontent.com/u/22115108?v=4", "events_url": "https://api.github.com/users/shikanime/events{/privacy}", "followers_url": "https://api.github.com/users/shikanime/followers", "following_url": "https://api.github.com/users/shikanime/following{/other_user}", "gists_url": "https://api.github.com/users/shikanime/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shikanime", "id": 22115108, "login": "shikanime", "node_id": "MDQ6VXNlcjIyMTE1MTA4", "organizations_url": "https://api.github.com/users/shikanime/orgs", "received_events_url": "https://api.github.com/users/shikanime/received_events", "repos_url": "https://api.github.com/users/shikanime/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shikanime/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shikanime/subscriptions", "type": "User", "url": "https://api.github.com/users/shikanime", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7386/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7386/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7381
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7381/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7381/comments
https://api.github.com/repos/huggingface/datasets/issues/7381/events
https://github.com/huggingface/datasets/issues/7381
2,815,649,092
I_kwDODunzps6n02VE
7,381
Iterating over values of a column in the IterableDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" } ]
null
[ "I'd be in favor of that ! I saw many people implementing their own iterables that wrap a dataset just to iterate on a single column, that would make things more practical.\n\nKinda related: https://github.com/huggingface/datasets/issues/5847", "(For anyone's information, I'm going on vacation for the next 3 weeks, so the work is postponed. If anyone can implement this feature within the next 4 weeks, go ahead :) )\n\nUPD from 04/06/25:\nI'm planning to start work on the feature in early May.", "#self-assign", "# Preliminary discussion\n\nIdeally, I would like to be able to operate on a column with [map](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.IterableDataset.map), [filter](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.IterableDataset.filter), [batch](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.IterableDataset.batch) and probably some other `IterableDataset`'s methods, however, the same results can be achieved by using the methods on an `IterableDataset` object and utilizing `__getitem__()` afterwards. Thus, one may not support these methods at first and try to make the implementation as simple as possible.\n\n# Implementation\n\nBased on the preliminary discussion, one can do the following:\n```python\nclass IterableColumn:\n def __init__(self, dataset: \"IterableDataset\", column_name: str):\n self.dataset = dataset\n self.column_name = column_name\n\n def __iter__(self) -> Iterator[Any]:\n for example in self.dataset:\n yield example[self.column_name]\n\n\nclass IterableDataset(DatasetInfoMixin):\n ...\n def __getitem__(self, column_name: str) -> IterableColumn:\n return IterableColumn(self, column_name)\n ...\n```\n\n# Testing\n\nIt works as expected in our simple test:\n```python\ndef gen():\n yield {\"text\": \"Good\", \"label\": 0}\n yield {\"text\": \"Bad\", \"label\": 1}\n\nds = IterableDataset.from_generator(gen)\n\ntexts = ds[\"text\"] # `texts` is an IterableColumn object\nfor v in texts:\n print(v) # Prints \"Good\" and \"Bad\"\nfor v in texts:\n print(v) # Prints \"Good\" and \"Bad\" again\n```\n\n# Questions\n\n1. What do you think about the implementation, @lhoestq?\n2. How to properly test the implementation? I've found [test_iterable_dataset.py](https://github.com/huggingface/datasets/blob/main/tests/test_iterable_dataset.py) but 1) I haven't found any guidelines for testing, 2) the script tests a lot of things while I'd like to test only my feature.", "Sounds great !\n\nRegarding testing, it's actually possible to have your test function in test_iterable_dataset.py, which you can run using\n\n```python\npytest tests/test_iterable_dataset.py::my_function\n```", "> Regarding testing, it's actually possible to have your test function in test_iterable_dataset.py, which you can run using\n\nI hoped not to run `pip install -e \".[dev]\"`, but your answer implies that I should. The problem is that I was unable to install the dependencies with Python 3.13 due to `tensorflow` and with Python 3.11-3.12 due to \"there are no versions of pyav\" [¬º-°]¬ Therefore, I had to test in a separate script file to avoid importing optional dependencies. Anyway, I've opened a PR: https://github.com/huggingface/datasets/pull/7564. Please, take a look (there are questions about the documentation).\n\nMoreover, I want to note that `make style` and `pre-commit` give different results for `test_iterable_dataset.py` (and a couple of files). Example:\n```python\n assert skip_ex_iterable.shuffle_data_sources(np.random.default_rng(42)) is skip_ex_iterable, (\n \"skip examples makes the shards order fixed\"\n )\n```\nvs\n```python\n assert (\n skip_ex_iterable.shuffle_data_sources(np.random.default_rng(42)) is skip_ex_iterable\n ), \"skip examples makes the shards order fixed\"\n```\n ¯\\\\_(ツ)_/¯\n\n> Kinda related: https://github.com/huggingface/datasets/issues/5847\n\nI had forgotten about this, but I've looked at it by now. [This comment](https://github.com/huggingface/datasets/issues/5847#issuecomment-1549799951) implies that `IterableColumn` should support chained indexing, so thank you for pointing this out! Did you mean anything else by referencing the issue?", "> I hoped not to run pip install -e \".[dev]\", but your answer implies that I should. The problem is that I was unable to install the dependencies with Python 3.13 due to tensorflow and with Python 3.11-3.12 due to \"there are no versions of pyav\" [¬º-°]¬ Therefore, I had to test in a separate script file to avoid importing optional dependencies. Anyway, I've opened a PR: https://github.com/huggingface/datasets/pull/7564. Please, take a look (there are questions about the documentation).\n\nwe try to not not require optional dependencies when running tests, so you can try running the tests only with `pytest`, `pytest-datadir` and `pytest-xdist`\n\n> I had forgotten about this, but I've looked at it by now. https://github.com/huggingface/datasets/issues/5847#issuecomment-1549799951 implies that IterableColumn should support chained indexing, so thank you for pointing this out! Did you mean anything else by referencing the issue?\n\nNo I simply referenced the issue because it will enable `pipe(ds[\"column_name\"])`, but no need to support nested fields access in a first step - we can see that later as it's uncommon and would add complexity to the contribution", "> we try to not not require optional dependencies when running tests, so you can try running the tests only with `pytest`, `pytest-datadir` and `pytest-xdist`\n\nUnderstood. If it's necessary to run the tests again, I'll try to install only the mentioned libraries, thank you!\n\n> No I simply referenced the issue because it will enable pipe(ds[\"column_name\"]), but no need to support nested fields access in a first step - we can see that later as it's uncommon and would add complexity to the contribution\n\nAh, I see. Anyway, I've already implemented chained indexing (it was relatively easy).\n\n@lhoestq, could you please take a look at the PR and answer [questions](https://github.com/huggingface/datasets/pull/7564#issuecomment-2863391781) there?", "> so you can try running the tests only with pytest, pytest-datadir and pytest-xdist\n\nYes, they are sufficient. There was one more problem with Python 3.12 and `distutils` that were removed, but I just downgraded to 3.11 and successfully ran `test_iterable_dataset.py`.", "@lhoestq, could you write in the [discussion](https://discuss.huggingface.co/t/how-to-iterate-over-values-of-a-column-in-the-iterabledataset/135649) for people coming there from the Internet that the feature has been implemented? I could do it by myself but the topic is closed to me.", "done, thanks you !" ]
2025-01-28T13:17:36Z
2025-05-22T18:00:04Z
2025-05-22T18:00:04Z
CONTRIBUTOR
null
null
null
null
### Feature request I would like to be able to iterate (and re-iterate if needed) over a column of an `IterableDataset` instance. The following example shows the supposed API: ```python def gen(): yield {"text": "Good", "label": 0} yield {"text": "Bad", "label": 1} ds = IterableDataset.from_generator(gen) texts = ds["text"] for v in texts: print(v) # Prints "Good" and "Bad" for v in texts: print(v) # Prints "Good" and "Bad" again ``` ### Motivation In the real world problems, huge NNs like Transformer are not always the best option, so there is a need to conduct experiments with different methods. While 🤗Datasets is perfectly adapted to 🤗Transformers, it may be inconvenient when being used with other libraries. The ability to retrieve a particular column is the case (e.g., gensim's FastText [requires](https://radimrehurek.com/gensim/models/fasttext.html#gensim.models.fasttext.FastText.train) only lists of strings, not dictionaries). While there are ways to achieve the desired functionality, they are not good ([forum](https://discuss.huggingface.co/t/how-to-iterate-over-values-of-a-column-in-the-iterabledataset/135649)). It would be great if there was a built-in solution. ### Your contribution Theoretically, I can submit a PR, but I have very little knowledge of the internal structure of 🤗Datasets, so some help may be needed. Moreover, I can only work on weekends, since I have a full-time job. However, the feature does not seem to be popular, so there is no need to implement it as fast as possible.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7381/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7381/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7378/comments
https://api.github.com/repos/huggingface/datasets/issues/7378/events
https://github.com/huggingface/datasets/issues/7378
2,802,957,388
I_kwDODunzps6nEbxM
7,378
Allow pushing config version to hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/129072?v=4", "events_url": "https://api.github.com/users/momeara/events{/privacy}", "followers_url": "https://api.github.com/users/momeara/followers", "following_url": "https://api.github.com/users/momeara/following{/other_user}", "gists_url": "https://api.github.com/users/momeara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/momeara", "id": 129072, "login": "momeara", "node_id": "MDQ6VXNlcjEyOTA3Mg==", "organizations_url": "https://api.github.com/users/momeara/orgs", "received_events_url": "https://api.github.com/users/momeara/received_events", "repos_url": "https://api.github.com/users/momeara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/momeara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/momeara/subscriptions", "type": "User", "url": "https://api.github.com/users/momeara", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! This sounds reasonable to me, feel free to open a PR :)" ]
2025-01-21T22:35:07Z
2025-01-30T13:56:56Z
null
NONE
null
null
null
null
### Feature request Currently, when datasets are created, they can be versioned by passing the `version` argument to `load_dataset(...)`. For example creating `outcomes.csv` on the command line ``` echo "id,value\n1,0\n2,0\n3,1\n4,1\n" > outcomes.csv ``` and creating it ``` import datasets dataset = datasets.load_dataset( "csv", data_files ="outcomes.csv", keep_in_memory = True, version = '1.0.0') ``` The version info is stored in the `info` and can be accessed e.g. by `next(iter(dataset.values())).info.version` This dataset can be uploaded to the hub with `dataset.push_to_hub(repo_id = "maomlab/example_dataset")`. This will create a dataset on the hub with the following in the `README.md`, but it doesn't upload the version information: ``` --- dataset_info: features: - name: id dtype: int64 - name: value dtype: int64 splits: - name: train num_bytes: 64 num_examples: 4 download_size: 1332 dataset_size: 64 configs: - config_name: default data_files: - split: train path: data/train-* --- ``` However, when I download from the hub, the version information is missing: ``` dataset_from_hub_no_version = datasets.load_dataset("maomlab/example_dataset") next(iter(dataset.values())).info.version ``` I can add the version information manually to the hub, by appending it to the end of config section: ``` ... configs: - config_name: default data_files: - split: train path: data/train-* version: 1.0.0 --- ``` And then when I download it, the version information is correct. ### Motivation ### Why adding version information for each config makes sense 1. The version information is already recorded in the dataset config info data structure and is able to parse it correctly, so it makes sense to sync it with `push_to_hub`. 2. Keeping the version info in at the config level is different from version info at the branch level. As the former relates to the version of the specific dataset the config refers to rather than the version of the dataset curation itself. ## A explanation for the current behavior: In [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 ), the `_INCLUDED_INFO_IN_YAML` variable doesn't include `"version"`. If my reading of the code is right, adding `"version"` to `_INCLUDED_INFO_IN_YAML`, would allow the version information to be uploaded to the hub. ### Your contribution Request: add `"version"` to `_INCLUDE_INFO_IN_YAML` in [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 )
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7378/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7378/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7377
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7377/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7377/comments
https://api.github.com/repos/huggingface/datasets/issues/7377/events
https://github.com/huggingface/datasets/issues/7377
2,802,723,285
I_kwDODunzps6nDinV
7,377
Support for sparse arrays with the Arrow Sparse Tensor format?
{ "avatar_url": "https://avatars.githubusercontent.com/u/3231217?v=4", "events_url": "https://api.github.com/users/JulesGM/events{/privacy}", "followers_url": "https://api.github.com/users/JulesGM/followers", "following_url": "https://api.github.com/users/JulesGM/following{/other_user}", "gists_url": "https://api.github.com/users/JulesGM/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JulesGM", "id": 3231217, "login": "JulesGM", "node_id": "MDQ6VXNlcjMyMzEyMTc=", "organizations_url": "https://api.github.com/users/JulesGM/orgs", "received_events_url": "https://api.github.com/users/JulesGM/received_events", "repos_url": "https://api.github.com/users/JulesGM/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JulesGM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JulesGM/subscriptions", "type": "User", "url": "https://api.github.com/users/JulesGM", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! Unfortunately the Sparse Tensor structure in Arrow is not part of the Arrow format (yes it's confusing...), so it's not possible to use it in `datasets`. It's a separate structure that doesn't correspond to any type or extension type in Arrow.\n\nThe Arrow community recently added an extension type for fixed shape tensors at https://arrow.apache.org/docs/format/CanonicalExtensions.html#fixed-shape-tensor, it should be possible to contribute an extension type for sparse tensors as well." ]
2025-01-21T20:14:35Z
2025-01-30T14:06:45Z
null
NONE
null
null
null
null
### Feature request AI in biology is becoming a big thing. One thing that would be a huge benefit to the field that Huggingface Datasets doesn't currently have is native support for **sparse arrays**. Arrow has support for sparse tensors. https://arrow.apache.org/docs/format/Other.html#sparse-tensor It would be a big deal if Hugging Face Datasets supported sparse tensors as a feature type, natively. ### Motivation This is important for example in the field of transcriptomics (modeling and understanding gene expression), because a large fraction of the genes are not expressed (zero). More generally, in science, sparse arrays are very common, so adding support for them would be very benefitial, it would make just using Hugging Face Dataset objects a lot more straightforward and clean. ### Your contribution We can discuss this further once the team comments of what they think about the feature, and if there were previous attempts at making it work, and understanding their evaluation of how hard it would be. My intuition is that it should be fairly straightforward, as the Arrow backend already supports it.
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 2, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/7377/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7377/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7375
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7375/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7375/comments
https://api.github.com/repos/huggingface/datasets/issues/7375/events
https://github.com/huggingface/datasets/issues/7375
2,800,609,218
I_kwDODunzps6m7efC
7,375
vllm批量推理报错
{ "avatar_url": "https://avatars.githubusercontent.com/u/51228154?v=4", "events_url": "https://api.github.com/users/YuShengzuishuai/events{/privacy}", "followers_url": "https://api.github.com/users/YuShengzuishuai/followers", "following_url": "https://api.github.com/users/YuShengzuishuai/following{/other_user}", "gists_url": "https://api.github.com/users/YuShengzuishuai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/YuShengzuishuai", "id": 51228154, "login": "YuShengzuishuai", "node_id": "MDQ6VXNlcjUxMjI4MTU0", "organizations_url": "https://api.github.com/users/YuShengzuishuai/orgs", "received_events_url": "https://api.github.com/users/YuShengzuishuai/received_events", "repos_url": "https://api.github.com/users/YuShengzuishuai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/YuShengzuishuai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/YuShengzuishuai/subscriptions", "type": "User", "url": "https://api.github.com/users/YuShengzuishuai", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Make sure you have installed a recent version of `soundfile`" ]
2025-01-21T03:22:23Z
2025-01-30T14:02:40Z
null
NONE
null
null
null
null
### Describe the bug ![Image](https://github.com/user-attachments/assets/3d958e43-28dc-4467-9333-5990c7af3b3f) ### Steps to reproduce the bug ![Image](https://github.com/user-attachments/assets/3067eeca-a54d-4956-b0fd-3fc5ea93dabb) ### Expected behavior ![Image](https://github.com/user-attachments/assets/77d32936-488f-4572-9365-bfb4170e555b) ### Environment info ![Image](https://github.com/user-attachments/assets/230335c4-825f-4db1-b07d-4776ef63ead8)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7375/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7375/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7373/comments
https://api.github.com/repos/huggingface/datasets/issues/7373/events
https://github.com/huggingface/datasets/issues/7373
2,793,237,139
I_kwDODunzps6mfWqT
7,373
Excessive RAM Usage After Dataset Concatenation concatenate_datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/40773225?v=4", "events_url": "https://api.github.com/users/sam-hey/events{/privacy}", "followers_url": "https://api.github.com/users/sam-hey/followers", "following_url": "https://api.github.com/users/sam-hey/following{/other_user}", "gists_url": "https://api.github.com/users/sam-hey/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sam-hey", "id": 40773225, "login": "sam-hey", "node_id": "MDQ6VXNlcjQwNzczMjI1", "organizations_url": "https://api.github.com/users/sam-hey/orgs", "received_events_url": "https://api.github.com/users/sam-hey/received_events", "repos_url": "https://api.github.com/users/sam-hey/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sam-hey/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sam-hey/subscriptions", "type": "User", "url": "https://api.github.com/users/sam-hey", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "![Image](https://github.com/user-attachments/assets/b6f8bcbd-44af-413e-bc06-65380eb0f746)\n\n![Image](https://github.com/user-attachments/assets/a241fcd8-4b62-495c-926c-685f82015dfb)\n\nAdding a img from memray\nhttps://gist.github.com/sam-hey/00c958f13fb0f7b54d17197fe353002f", "I'm having the same issue where concatenation seems to use a huge amount of RAM.\n\n```python\n# Load all chunks and concatenate them into a final dataset.\n chunk_datasets = [\n Dataset.load_from_disk(file, keep_in_memory=False)\n for file in tqdm(chunk_files, desc=\"Loading chunk datasets\")\n ]\n logging.info(\"Concatenating chunk datasets...\")\n final_dataset = concatenate_datasets(chunk_datasets)\n```\n\nThis is a real issue for me as the final dataset is a few terabytes in size. I'm using datasets version `3.1.0`. Also tested with version `3.4.1`", "I did have a short look, the error seems to be from `memory_map` and the stream not being closed. \n\nhttps://github.com/huggingface/datasets/blob/5f8d2ad9a1b0bccfd962d998987228addfd5be9f/src/datasets/table.py#L48-L50\n\n\nDid not have the time to test jet: https://github.com/sam-hey/datasets/tree/fix/concatenate_datasets\n\nI will probably have a better look in a couple of days. \n\n" ]
2025-01-16T16:33:10Z
2025-03-27T17:40:59Z
null
NONE
null
null
null
null
### Describe the bug When loading a dataset from disk, concatenating it, and starting the training process, the RAM usage progressively increases until the kernel terminates the process due to excessive memory consumption. https://github.com/huggingface/datasets/issues/2276 ### Steps to reproduce the bug ```python from datasets import DatasetDict, concatenate_datasets dataset = DatasetDict.load_from_disk("data") ... ... combined_dataset = concatenate_datasets( [dataset[split] for split in dataset] ) #start SentenceTransformer training ``` ### Expected behavior I would not expect RAM utilization to increase after concatenation. Removing the concatenation step resolves the issue ### Environment info sentence-transformers==3.1.1 datasets==3.2.0 python3.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7373/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7373/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7372/comments
https://api.github.com/repos/huggingface/datasets/issues/7372/events
https://github.com/huggingface/datasets/issues/7372
2,791,760,968
I_kwDODunzps6mZuRI
7,372
Inconsistent Behavior Between `load_dataset` and `load_from_disk` When Loading Sharded Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/38203359?v=4", "events_url": "https://api.github.com/users/gaohongkui/events{/privacy}", "followers_url": "https://api.github.com/users/gaohongkui/followers", "following_url": "https://api.github.com/users/gaohongkui/following{/other_user}", "gists_url": "https://api.github.com/users/gaohongkui/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gaohongkui", "id": 38203359, "login": "gaohongkui", "node_id": "MDQ6VXNlcjM4MjAzMzU5", "organizations_url": "https://api.github.com/users/gaohongkui/orgs", "received_events_url": "https://api.github.com/users/gaohongkui/received_events", "repos_url": "https://api.github.com/users/gaohongkui/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gaohongkui/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gaohongkui/subscriptions", "type": "User", "url": "https://api.github.com/users/gaohongkui", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-16T05:47:20Z
2025-01-16T05:47:20Z
null
NONE
null
null
null
null
### Description I encountered an inconsistency in behavior between `load_dataset` and `load_from_disk` when loading sharded datasets. Here is a minimal example to reproduce the issue: #### Code 1: Using `load_dataset` ```python from datasets import Dataset, load_dataset # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_dataset("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 1350 samples. - `test` has 150 samples. #### Code 2: Using `load_from_disk` ```python from datasets import Dataset, load_from_disk # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_from_disk("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 450 samples. - `test` has 50 samples. ### Expected Behavior I expected both `load_dataset` and `load_from_disk` to load the same dataset, as they are pointing to the same directory. However, the results differ significantly: - `load_dataset` seems to merge all shards, resulting in a combined dataset. - `load_from_disk` only loads the last saved dataset, ignoring previous shards. ### Questions 1. Is this behavior intentional? If so, could you clarify the difference between `load_dataset` and `load_from_disk` in the documentation? 2. If this is not intentional, could this be considered a bug? 3. What is the recommended way to handle cases where multiple datasets are saved to the same directory? Thank you for your time and effort in maintaining this great library! I look forward to your feedback.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7372/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7372/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7371
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7371/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7371/comments
https://api.github.com/repos/huggingface/datasets/issues/7371/events
https://github.com/huggingface/datasets/issues/7371
2,790,549,889
I_kwDODunzps6mVGmB
7,371
500 Server error with pushing a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7677814?v=4", "events_url": "https://api.github.com/users/martinmatak/events{/privacy}", "followers_url": "https://api.github.com/users/martinmatak/followers", "following_url": "https://api.github.com/users/martinmatak/following{/other_user}", "gists_url": "https://api.github.com/users/martinmatak/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/martinmatak", "id": 7677814, "login": "martinmatak", "node_id": "MDQ6VXNlcjc2Nzc4MTQ=", "organizations_url": "https://api.github.com/users/martinmatak/orgs", "received_events_url": "https://api.github.com/users/martinmatak/received_events", "repos_url": "https://api.github.com/users/martinmatak/repos", "site_admin": false, "starred_url": "https://api.github.com/users/martinmatak/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/martinmatak/subscriptions", "type": "User", "url": "https://api.github.com/users/martinmatak", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "EDIT: seems to be all good now. I'll add a comment if the error happens again within the next 48 hours. If it doesn't, I'll just close the topic." ]
2025-01-15T18:23:02Z
2025-01-15T20:06:05Z
null
NONE
null
null
null
null
### Describe the bug Suddenly, I started getting this error message saying it was an internal error. `Error creating/pushing dataset: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible! Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/u1295595/grasp_dataset_converter/src/grasp_dataset_converter/main.py", line 142, in main subset_train.push_to_hub(dataset_name, split='train') File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5624, in push_to_hub commit_info = api.create_commit( File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 1518, in _inner return fn(self, *args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 4087, in create_commit hf_raise_for_status(commit_resp, endpoint_name="commit") File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible!` ### Steps to reproduce the bug I am pushing a Dataset in a loop via push_to_hub API ### Expected behavior It worked fine until it stopped working suddenly. Expected behavior: It should start working again ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-4.18.0-477.15.1.el8_8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.0 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7371/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7371/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7369
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7369/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7369/comments
https://api.github.com/repos/huggingface/datasets/issues/7369/events
https://github.com/huggingface/datasets/issues/7369
2,787,193,238
I_kwDODunzps6mITGW
7,369
Importing dataset gives unhelpful error message when filenames in metadata.csv are not found in the directory
{ "avatar_url": "https://avatars.githubusercontent.com/u/38278139?v=4", "events_url": "https://api.github.com/users/svencornetsdegroot/events{/privacy}", "followers_url": "https://api.github.com/users/svencornetsdegroot/followers", "following_url": "https://api.github.com/users/svencornetsdegroot/following{/other_user}", "gists_url": "https://api.github.com/users/svencornetsdegroot/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/svencornetsdegroot", "id": 38278139, "login": "svencornetsdegroot", "node_id": "MDQ6VXNlcjM4Mjc4MTM5", "organizations_url": "https://api.github.com/users/svencornetsdegroot/orgs", "received_events_url": "https://api.github.com/users/svencornetsdegroot/received_events", "repos_url": "https://api.github.com/users/svencornetsdegroot/repos", "site_admin": false, "starred_url": "https://api.github.com/users/svencornetsdegroot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/svencornetsdegroot/subscriptions", "type": "User", "url": "https://api.github.com/users/svencornetsdegroot", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I'd prefer even more verbose errors; like `\"file123.mp3\" is referenced in metadata.csv, but not found in the data directory '/path/to/audiofolder' ! (and 100+ more missing files)` Or something along those lines." ]
2025-01-14T13:53:21Z
2025-01-14T15:05:51Z
null
NONE
null
null
null
null
### Describe the bug While importing an audiofolder dataset, where the names of the audiofiles don't correspond to the filenames in the metadata.csv, we get an unclear error message that is not helpful for the debugging, i.e. ``` ValueError: Instruction "train" corresponds to no data! ``` ### Steps to reproduce the bug Assume an audiofolder with audiofiles, filename1.mp3, filename2.mp3 etc and a file metadata.csv which contains the columns file_name and sentence. The file_names are formatted like filename1.mp3, filename2.mp3 etc. Load the audio ``` from datasets import load_dataset load_dataset("audiofolder", data_dir='/path/to/audiofolder') ``` When the file_names in the csv are not in sync with the filenames in the audiofolder, then we get an Error message: ``` File /opt/conda/lib/python3.12/site-packages/datasets/arrow_reader.py:251, in BaseReader.read(self, name, instructions, split_infos, in_memory) 249 if not files: 250 msg = f'Instruction "{instructions}" corresponds to no data!' --> 251 raise ValueError(msg) 252 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) ValueError: Instruction "train" corresponds to no data! ``` load_dataset has a default value for the argument split = 'train'. ### Expected behavior It would be better to get an error report something like: ``` The metadata.csv file has different filenames than the files in the datadirectory. ``` It would have saved me 4 hours of debugging. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-427.40.1.el9_4.x86_64-x86_64-with-glibc2.39 - Python version: 3.12.8 - `huggingface_hub` version: 0.27.0 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7369/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7369/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7366
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7366/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7366/comments
https://api.github.com/repos/huggingface/datasets/issues/7366/events
https://github.com/huggingface/datasets/issues/7366
2,781,522,894
I_kwDODunzps6lyqvO
7,366
Dataset.from_dict() can't handle large dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/164967134?v=4", "events_url": "https://api.github.com/users/CSU-OSS/events{/privacy}", "followers_url": "https://api.github.com/users/CSU-OSS/followers", "following_url": "https://api.github.com/users/CSU-OSS/following{/other_user}", "gists_url": "https://api.github.com/users/CSU-OSS/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/CSU-OSS", "id": 164967134, "login": "CSU-OSS", "node_id": "U_kgDOCdUy3g", "organizations_url": "https://api.github.com/users/CSU-OSS/orgs", "received_events_url": "https://api.github.com/users/CSU-OSS/received_events", "repos_url": "https://api.github.com/users/CSU-OSS/repos", "site_admin": false, "starred_url": "https://api.github.com/users/CSU-OSS/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/CSU-OSS/subscriptions", "type": "User", "url": "https://api.github.com/users/CSU-OSS", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-11T02:05:21Z
2025-01-11T02:05:21Z
null
NONE
null
null
null
null
### Describe the bug I have 26,000,000 3-tuples. When I use Dataset.from_dict() to load, neither. py nor Jupiter notebook can run successfully. This is my code: ``` # len(example_data) is 26,000,000, 'diff' is a text diff1_list = [example_data[i].texts[0] for i in range(len(example_data))] diff2_list = [example_data[i].texts[1] for i in range(len(example_data))] label_list = [example_data[i].label for i in range(len(example_data))] embedding_dataset = Dataset.from_dict({ "diff1": diff1_list, "diff2": diff2_list, "label": label_list }) ``` ### Steps to reproduce the bug 1. Initialize a large 3-tuple, e.g. 26,000,000 2. Use Dataset.from_dict() to load ### Expected behavior Dataset.from_dict() run successfully ### Environment info sentence-transformers 3.3.1
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7366/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7366/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7365
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7365/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7365/comments
https://api.github.com/repos/huggingface/datasets/issues/7365/events
https://github.com/huggingface/datasets/issues/7365
2,780,216,199
I_kwDODunzps6ltruH
7,365
A parameter is specified but not used in datasets.arrow_dataset.Dataset.from_pandas()
{ "avatar_url": "https://avatars.githubusercontent.com/u/69003192?v=4", "events_url": "https://api.github.com/users/NourOM02/events{/privacy}", "followers_url": "https://api.github.com/users/NourOM02/followers", "following_url": "https://api.github.com/users/NourOM02/following{/other_user}", "gists_url": "https://api.github.com/users/NourOM02/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NourOM02", "id": 69003192, "login": "NourOM02", "node_id": "MDQ6VXNlcjY5MDAzMTky", "organizations_url": "https://api.github.com/users/NourOM02/orgs", "received_events_url": "https://api.github.com/users/NourOM02/received_events", "repos_url": "https://api.github.com/users/NourOM02/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NourOM02/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NourOM02/subscriptions", "type": "User", "url": "https://api.github.com/users/NourOM02", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-10T13:39:33Z
2025-01-10T13:39:33Z
null
NONE
null
null
null
null
### Describe the bug I am interested in creating train, test and eval splits from a pandas Dataframe, therefore I was looking at the possibilities I can follow. I noticed the split parameter and was hopeful to use it in order to generate the 3 at once, however, while trying to understand the code, i noticed that it has no added value (correct me if I am wrong or misunderstood the code). from_pandas function code : ```python if info is not None and features is not None and info.features != features: raise ValueError( f"Features specified in `features` and `info.features` can't be different:\n{features}\n{info.features}" ) features = features if features is not None else info.features if info is not None else None if info is None: info = DatasetInfo() info.features = features table = InMemoryTable.from_pandas( df=df, preserve_index=preserve_index, ) if features is not None: # more expensive cast than InMemoryTable.from_pandas(..., schema=features.arrow_schema) # needed to support the str to Audio conversion for instance table = table.cast(features.arrow_schema) return cls(table, info=info, split=split) ``` ### Steps to reproduce the bug ```python from datasets import Dataset # Filling the split parameter with whatever causes no harm at all data = Dataset.from_pandas(self.raw_data, split='egiojegoierjgoiejgrefiergiuorenvuirgurthgi') ``` ### Expected behavior Would be great if there is no split parameter (if it isn't working), or to add a concrete example of how it can be used. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-127-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7365/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7365/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7364
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7364/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7364/comments
https://api.github.com/repos/huggingface/datasets/issues/7364/events
https://github.com/huggingface/datasets/issues/7364
2,776,929,268
I_kwDODunzps6lhJP0
7,364
API endpoints for gated dataset access requests
{ "avatar_url": "https://avatars.githubusercontent.com/u/6140840?v=4", "events_url": "https://api.github.com/users/jerome-white/events{/privacy}", "followers_url": "https://api.github.com/users/jerome-white/followers", "following_url": "https://api.github.com/users/jerome-white/following{/other_user}", "gists_url": "https://api.github.com/users/jerome-white/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jerome-white", "id": 6140840, "login": "jerome-white", "node_id": "MDQ6VXNlcjYxNDA4NDA=", "organizations_url": "https://api.github.com/users/jerome-white/orgs", "received_events_url": "https://api.github.com/users/jerome-white/received_events", "repos_url": "https://api.github.com/users/jerome-white/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jerome-white/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jerome-white/subscriptions", "type": "User", "url": "https://api.github.com/users/jerome-white", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Looks like a [similar feature request](https://github.com/huggingface/huggingface_hub/issues/1198) was made to the HF Hub team. Is handling this at the Hub level more appropriate?\r\n\r\n(As an aside, I've gotten the [HTTP-based solution](https://github.com/huggingface/huggingface_hub/issues/1198#issuecomment-1905774983) proposed in that forum to work for simple cases.)", "yes it's more for https://github.com/huggingface/huggingface_hub cc @hanouticelina ", "yes i think @Wauplin's comment on that thread is still what we recommend" ]
2025-01-09T06:21:20Z
2025-01-09T11:17:40Z
2025-01-09T11:17:20Z
NONE
null
null
null
null
### Feature request I would like a programatic way of requesting access to gated datasets. The current solution to gain access forces me to visit a website and physically click an "agreement" button (as per the [documentation](https://huggingface.co/docs/hub/en/datasets-gated#access-gated-datasets-as-a-user)). An ideal approach would be HF API download methods that negotiate access on my behalf based on information from my CLI login and/or token. I realise that may be naive given the various types of access semantics available to dataset authors (automatic versus manual approval, for example) and complexities it might add to existing methods, but something along those lines would be nice. Perhaps using the `*_access_request` methods available to dataset authors can be a precedent; see [`reject_access_request`](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/hf_api#huggingface_hub.HfApi.reject_access_request) for example. ### Motivation When trying to download files from a gated dataset, I'm met with a `GatedRepoError` and instructed to visit the repository's website to gain access: ``` Cannot access gated repo for url https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details/resolve/main/meta-llama__Meta-Llama-3.1-70B-Instruct/samples_leaderboard_math_precalculus_hard_2024-07-19T18-47-29.522341.jsonl. Access to dataset open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details is restricted and you are not in the authorized list. Visit https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details to ask for access. ``` This makes task automation extremely difficult. For example, I'm interested in studying sample-level responses of models on the LLM leaderboard -- how they answered particular questions on a given evaluation framework. As I come across more and more participants that gate their data, it's becoming unwieldy to continue my work (there over 2,000 participants, so in the worst case that's the number of website visits I'd need to manually undertake). One approach is use Selenium to react to the `GatedRepoError`, but that seems like overkill; and a potential violation HF terms of service (?). As mentioned in the previous section, there seems to be an [API for gated dataset owners](https://huggingface.co/docs/hub/en/datasets-gated#via-the-api) to managed access requests, and thus some appetite for allowing automated management of gating. This feature request is to extend that to dataset users. ### Your contribution Whether I can help depends on a few things; one being the complexity of the underlying gated access design. If this feature request is accepted I am open to being involved in discussions and testing, and even development under the right time-outcome tradeoff.
{ "avatar_url": "https://avatars.githubusercontent.com/u/6140840?v=4", "events_url": "https://api.github.com/users/jerome-white/events{/privacy}", "followers_url": "https://api.github.com/users/jerome-white/followers", "following_url": "https://api.github.com/users/jerome-white/following{/other_user}", "gists_url": "https://api.github.com/users/jerome-white/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jerome-white", "id": 6140840, "login": "jerome-white", "node_id": "MDQ6VXNlcjYxNDA4NDA=", "organizations_url": "https://api.github.com/users/jerome-white/orgs", "received_events_url": "https://api.github.com/users/jerome-white/received_events", "repos_url": "https://api.github.com/users/jerome-white/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jerome-white/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jerome-white/subscriptions", "type": "User", "url": "https://api.github.com/users/jerome-white", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7364/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7364/timeline
null
not_planned
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7363
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7363/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7363/comments
https://api.github.com/repos/huggingface/datasets/issues/7363/events
https://github.com/huggingface/datasets/issues/7363
2,774,090,012
I_kwDODunzps6lWUEc
7,363
ImportError: To support decoding images, please install 'Pillow'.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1394644?v=4", "events_url": "https://api.github.com/users/jamessdixon/events{/privacy}", "followers_url": "https://api.github.com/users/jamessdixon/followers", "following_url": "https://api.github.com/users/jamessdixon/following{/other_user}", "gists_url": "https://api.github.com/users/jamessdixon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jamessdixon", "id": 1394644, "login": "jamessdixon", "node_id": "MDQ6VXNlcjEzOTQ2NDQ=", "organizations_url": "https://api.github.com/users/jamessdixon/orgs", "received_events_url": "https://api.github.com/users/jamessdixon/received_events", "repos_url": "https://api.github.com/users/jamessdixon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jamessdixon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jamessdixon/subscriptions", "type": "User", "url": "https://api.github.com/users/jamessdixon", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "what's your `pip show Pillow` output", "same issue.. my pip show Pillow output as below:\n\n```\nName: pillow\nVersion: 11.1.0\nSummary: Python Imaging Library (Fork)\nHome-page: https://python-pillow.github.io/\nAuthor: \nAuthor-email: \"Jeffrey A. Clark\" <aclark@aclark.net>\nLicense: MIT-CMU\nLocation: [/opt/homebrew/lib/python3.10/site-packages](https://file+.vscode-resource.vscode-cdn.net/opt/homebrew/lib/python3.10/site-packages)\nRequires: \nRequired-by:\n```", "I encountered the same problem on Ubuntu system, my pip show Pillow output as below:\n\n```\nName: pillow\nVersion: 10.4.0\nSummary: Python Imaging Library (Fork)\nHome-page: https://python-pillow.org/\nAuthor: \nAuthor-email: \"Jeffrey A. Clark\" <[aclark@aclark.net](mailto:aclark@aclark.net)>\nLicense: HPND\nLocation: /home/shunying/.local/lib/python3.8/site-packages\nRequires: \nRequired-by: \n```\n\nWell, solved this by specifying the pip version to my conda virtual environment :)", "I have also encountered this. It's a strange thing that's happening.\n\nChecking the code `datasets` it uses `importlib.util.find_spec(\"PIL\")` to verify if `PIL` is installed. While both `pip show` and `importlib` work correctly, I still got the error.\n\nIn my case, restarting and redoing the `datasets` import helped. Seems weird to me." ]
2025-01-08T02:22:57Z
2025-05-28T14:56:53Z
null
NONE
null
null
null
null
### Describe the bug Following this tutorial locally using a macboko and VSCode: https://huggingface.co/docs/diffusers/en/tutorials/basic_training This line of code: for i, image in enumerate(dataset[:4]["image"]): throws: ImportError: To support decoding images, please install 'Pillow'. Pillow is installed. ### Steps to reproduce the bug Run the tutorial ### Expected behavior Images should be rendered ### Environment info MacBook, VSCode
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7363/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7363/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7362
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7362/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7362/comments
https://api.github.com/repos/huggingface/datasets/issues/7362/events
https://github.com/huggingface/datasets/issues/7362
2,773,731,829
I_kwDODunzps6lU8n1
7,362
HuggingFace CLI dataset download raises error
{ "avatar_url": "https://avatars.githubusercontent.com/u/3870355?v=4", "events_url": "https://api.github.com/users/ajayvohra2005/events{/privacy}", "followers_url": "https://api.github.com/users/ajayvohra2005/followers", "following_url": "https://api.github.com/users/ajayvohra2005/following{/other_user}", "gists_url": "https://api.github.com/users/ajayvohra2005/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ajayvohra2005", "id": 3870355, "login": "ajayvohra2005", "node_id": "MDQ6VXNlcjM4NzAzNTU=", "organizations_url": "https://api.github.com/users/ajayvohra2005/orgs", "received_events_url": "https://api.github.com/users/ajayvohra2005/received_events", "repos_url": "https://api.github.com/users/ajayvohra2005/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ajayvohra2005/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ajayvohra2005/subscriptions", "type": "User", "url": "https://api.github.com/users/ajayvohra2005", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I got the same error and was able to resolve it by upgrading from 2.15.0 to 3.2.0.", "> I got the same error and was able to resolve it by upgrading from 2.15.0 to 3.2.0.\r\n\r\nWhat is needed is upgrading `huggingface-hub==0.27.1`. `datasets` does not appear to have anything to do with the error. The upgrade is a workaround, if the workaround works for your use case. Otherwise, this issue breaks all existing Python clients not using some minimum version of `huggingface-hub`. ", "Correct, this has to do with `huggingface_hub`, not `datasets`. Some old versions of `huggingface_hub` are unfortunately not robust to recent changes on HF. Updating `huggingface_hub` fixes the issue :)\r\n\r\nClosing this issue since it's not directly related to `datasets`" ]
2025-01-07T21:03:30Z
2025-01-08T15:00:37Z
2025-01-08T14:35:52Z
NONE
null
null
null
null
### Describe the bug Trying to download Hugging Face datasets using Hugging Face CLI raises error. This error only started after December 27th, 2024. For example: ``` huggingface-cli download --repo-type dataset gboleda/wikicorpus Traceback (most recent call last): File "/home/ubuntu/test_venv/bin/huggingface-cli", line 8, in <module> sys.exit(main()) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/huggingface_cli.py", line 51, in main service.run() File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/download.py", line 146, in run print(self._download()) # Print path to downloaded files File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/download.py", line 180, in _download return snapshot_download( File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py", line 164, in snapshot_download repo_info = api.repo_info(repo_id=repo_id, repo_type=repo_type, revision=revision, token=token) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2491, in repo_info return method( File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2366, in dataset_info return DatasetInfo(**data) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 799, in __init__ self.tags = kwargs.pop("tags") KeyError: 'tags' ``` ### Steps to reproduce the bug ``` 1. huggingface-cli download --repo-type dataset gboleda/wikicorpus ``` ### Expected behavior There should be no error. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.8.0-1015-aws-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.3.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7362/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7362/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7360
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7360/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7360/comments
https://api.github.com/repos/huggingface/datasets/issues/7360/events
https://github.com/huggingface/datasets/issues/7360
2,771,751,406
I_kwDODunzps6lNZHu
7,360
error when loading dataset in Hugging Face: NoneType error is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/189343338?v=4", "events_url": "https://api.github.com/users/nanu23333/events{/privacy}", "followers_url": "https://api.github.com/users/nanu23333/followers", "following_url": "https://api.github.com/users/nanu23333/following{/other_user}", "gists_url": "https://api.github.com/users/nanu23333/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nanu23333", "id": 189343338, "login": "nanu23333", "node_id": "U_kgDOC0kmag", "organizations_url": "https://api.github.com/users/nanu23333/orgs", "received_events_url": "https://api.github.com/users/nanu23333/received_events", "repos_url": "https://api.github.com/users/nanu23333/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nanu23333/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nanu23333/subscriptions", "type": "User", "url": "https://api.github.com/users/nanu23333", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! I couldn't reproduce on my side, can you try deleting your cache at `~/.cache/huggingface/modules/datasets_modules/datasets/InstaDeepAI--nucleotide_transformer_downstream_tasks_revised` and try again ? For some reason `datasets` wasn't able to find the DatasetBuilder class in the python script of this dataset", "I've met the same problem when importing [LongBench-v1](https://github.com/THUDM/LongBench/blob/main/LongBench/README.md). the debugger reports `dataset_module.builder_configs_parameters.builder_configs` as `None` so that no `builder_cls` gets created:\n\n<img width=\"711\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/b62bdea7-442b-47dc-b892-87f4d235e324\" />\n\ndoes this mean that I need to downgrade `datasets`?", "I tried downgrading `datasets` to v2.20.0 and it works fine now...\n\nI think there might be some compatibility issues during code updates between `v2.20.0` and `v3.0.0` 🤔 \n\nalso I suggest @nanu23333 to see if downgrading works.", "Found the same problem. When I tried to downgrade the datasets to version below v3.0.0, another problem was raised: `UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb5 in position 1: invalid start byte`", "\nwhen I use the pip install datasets==3.3, I come across the error。Then I \n```\npip uninstall datasets\npip install datasets==2.21.0\n```\nIt is OK now" ]
2025-01-07T02:11:36Z
2025-02-24T13:32:52Z
null
NONE
null
null
null
null
### Describe the bug I met an error when running a notebook provide by Hugging Face, and met the error. ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[2], line 5 3 # Load the enhancers dataset from the InstaDeep Hugging Face ressources 4 dataset_name = "enhancers_types" ----> 5 train_dataset_enhancers = load_dataset( 6 "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", 7 dataset_name, 8 split="train", 9 streaming= False, 10 ) 11 test_dataset_enhancers = load_dataset( 12 "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", 13 dataset_name, 14 split="test", 15 streaming= False, 16 ) File /public/home/hhl/miniconda3/envs/transformer/lib/python3.9/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File /public/home/hhl/miniconda3/envs/transformer/lib/python3.9/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance TypeError: 'NoneType' object is not callable ``` I have checked my internet, it worked well. And the dataset name was just copied from the Hugging Face. Totally no idea what is wrong! ### Steps to reproduce the bug To reproduce the bug you may run ``` from datasets import load_dataset, Dataset # Load the enhancers dataset from the InstaDeep Hugging Face ressources dataset_name = "enhancers_types" train_dataset_enhancers = load_dataset( "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", dataset_name, split="train", streaming= False, ) test_dataset_enhancers = load_dataset( "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", dataset_name, split="test", streaming= False, ) ``` ### Expected behavior 1. what may be the reasons of the error 2. how can I fine which reason lead to the error 3. how can I save the problem ### Environment info ``` - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-117-generic-x86_64-with-glibc2.31 - Python version: 3.9.21 - `huggingface_hub` version: 0.27.0 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7360/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7360/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7359/comments
https://api.github.com/repos/huggingface/datasets/issues/7359/events
https://github.com/huggingface/datasets/issues/7359
2,771,137,842
I_kwDODunzps6lLDUy
7,359
There are multiple 'mteb/arguana' configurations in the cache: default, corpus, queries with HF_HUB_OFFLINE=1
{ "avatar_url": "https://avatars.githubusercontent.com/u/723146?v=4", "events_url": "https://api.github.com/users/Bhavya6187/events{/privacy}", "followers_url": "https://api.github.com/users/Bhavya6187/followers", "following_url": "https://api.github.com/users/Bhavya6187/following{/other_user}", "gists_url": "https://api.github.com/users/Bhavya6187/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Bhavya6187", "id": 723146, "login": "Bhavya6187", "node_id": "MDQ6VXNlcjcyMzE0Ng==", "organizations_url": "https://api.github.com/users/Bhavya6187/orgs", "received_events_url": "https://api.github.com/users/Bhavya6187/received_events", "repos_url": "https://api.github.com/users/Bhavya6187/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Bhavya6187/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bhavya6187/subscriptions", "type": "User", "url": "https://api.github.com/users/Bhavya6187", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Related to https://github.com/embeddings-benchmark/mteb/issues/1714" ]
2025-01-06T17:42:49Z
2025-01-06T17:43:31Z
null
NONE
null
null
null
null
### Describe the bug Hey folks, I am trying to run this code - ```python from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") ``` with HF_HUB_OFFLINE=1 But I get the following error - ```python Using the latest cached version of the dataset since mteb/arguana couldn't be found on the Hugging Face Hub (offline mode is enabled). --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 1 ----> 1 ds = load_dataset("mteb/arguana") File ~/env/lib/python3.10/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File ~/env/lib/python3.10/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:124, in Cache.__init__(self, cache_dir, dataset_name, config_name, version, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs) 122 config_kwargs["data_dir"] = data_dir 123 if hash == "auto" and version == "auto": --> 124 config_name, version, hash = _find_hash_in_cache( 125 dataset_name=repo_id or dataset_name, 126 config_name=config_name, 127 cache_dir=cache_dir, 128 config_kwargs=config_kwargs, 129 custom_features=features, 130 ) 131 elif hash == "auto" or version == "auto": 132 raise NotImplementedError("Pass both hash='auto' and version='auto' instead") File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:84, in _find_hash_in_cache(dataset_name, config_name, cache_dir, config_kwargs, custom_features) 72 other_configs = [ 73 Path(_cached_directory_path).parts[-3] 74 for _cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", version, hash)) (...) 81 ) 82 ] 83 if not config_id and len(other_configs) > 1: ---> 84 raise ValueError( 85 f"There are multiple '{dataset_name}' configurations in the cache: {', '.join(other_configs)}" 86 f"\nPlease specify which configuration to reload from the cache, e.g." 87 f"\n\tload_dataset('{dataset_name}', '{other_configs[0]}')" 88 ) 89 config_name = cached_directory_path.parts[-3] 90 warning_msg = ( 91 f"Found the latest cached dataset configuration '{config_name}' at {cached_directory_path} " 92 f"(last modified on {time.ctime(_get_modification_time(cached_directory_path))})." 93 ) ValueError: There are multiple 'mteb/arguana' configurations in the cache: queries, corpus, default Please specify which configuration to reload from the cache, e.g. load_dataset('mteb/arguana', 'queries') ``` It works when I run the same code with HF_HUB_OFFLINE=0, but after the data is downloaded, I turn off the HF hub cache with HF_HUB_OFFLINE=1, and then this error appears. Are there some files I am missing with hub disabled? ### Steps to reproduce the bug from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") with HF_HUB_OFFLINE=1 (after already running it with HF_HUB_OFFLINE=0 and populating the datasets cache) ### Expected behavior Dataset loaded successfully as it does with HF_HUB_OFFLINE=1 ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.148.2-2.cm2-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.27.0 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7359/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7359/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7357
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7357/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7357/comments
https://api.github.com/repos/huggingface/datasets/issues/7357/events
https://github.com/huggingface/datasets/issues/7357
2,770,456,127
I_kwDODunzps6lIc4_
7,357
Python process aborded with GIL issue when using image dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/25342812?v=4", "events_url": "https://api.github.com/users/AlexKoff88/events{/privacy}", "followers_url": "https://api.github.com/users/AlexKoff88/followers", "following_url": "https://api.github.com/users/AlexKoff88/following{/other_user}", "gists_url": "https://api.github.com/users/AlexKoff88/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AlexKoff88", "id": 25342812, "login": "AlexKoff88", "node_id": "MDQ6VXNlcjI1MzQyODEy", "organizations_url": "https://api.github.com/users/AlexKoff88/orgs", "received_events_url": "https://api.github.com/users/AlexKoff88/received_events", "repos_url": "https://api.github.com/users/AlexKoff88/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AlexKoff88/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AlexKoff88/subscriptions", "type": "User", "url": "https://api.github.com/users/AlexKoff88", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The issue seems to come from `pyarrow`, I opened an issue on their side at https://github.com/apache/arrow/issues/45214", "I \"solved\" this by setting a low batch_size for load_datasets()", "datasets==3.1.0 works\ndatasets==4.1.1 fails" ]
2025-01-06T11:29:30Z
2025-09-21T15:04:39Z
null
NONE
null
null
null
null
### Describe the bug The issue is visible only with the latest `datasets==3.2.0`. When using image dataset the Python process gets aborted right before the exit with the following error: ``` Fatal Python error: PyGILState_Release: thread state 0x7fa1f409ade0 must be current when releasing Python runtime state: finalizing (tstate=0x0000000000ad2958) Thread 0x00007fa33d157740 (most recent call first): <no Python frame> Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._boun ded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.ts libs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.t slibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._l ibs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pan das._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, charset_normalizer.md, requests.pa ckages.charset_normalizer.md, requests.packages.chardet.md, yaml._yaml, markupsafe._speedups, PIL._imaging, torch._C, torch._C._dynamo.autograd_compiler, torch._C._dynamo.eval_frame, torch._C._dynamo.guards , torch._C._dynamo.utils, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, sentencepiece._sentencepiece, sklearn.__check_build._check_build, psutil._psut il_linux, psutil._psutil_posix, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.l inalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_up date, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flo w, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.spatial ._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._group_columns, s cipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, sc ipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.l inalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integr ate._lsoda, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._r gi_cython, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._ansari_swilk_statis tics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, sklearn.utils._isf inite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.p reprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._bas e, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distanc es_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, s klearn.metrics._pairwise_fast, PIL._imagingft, google._upb._message, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.utils, h5py.h5t, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5r, h5py._proxy, h5py._conv, h5py.h5z, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5o, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5l, h5py._selector, _cffi_backend, pyarrow._parquet, pyarrow._fs, pyarrow._azurefs, pyarrow._hdfs , pyarrow._gcsfs, pyarrow._s3fs, multidict._multidict, propcache._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, xxhash ._xxhash, pyarrow._json, pyarrow._acero, pyarrow._csv, pyarrow._dataset, pyarrow._dataset_orc, pyarrow._parquet_encryption, pyarrow._dataset_parquet_encryption, pyarrow._dataset_parquet, regex._regex, scipy .io.matlab._mio_utils, scipy.io.matlab._streams, scipy.io.matlab._mio5_utils, PIL._imagingmath, PIL._webp (total: 236) Aborted (core dumped) ```an ### Steps to reproduce the bug Install `datasets==3.2.0` Run the following script: ```python import datasets DATASET_NAME = "phiyodr/InpaintCOCO" NUM_SAMPLES = 10 def preprocess_fn(example): return { "prompts": example["inpaint_caption"], "images": example["coco_image"], "masks": example["mask"], } default_dataset = datasets.load_dataset( DATASET_NAME, split="test", streaming=True ).filter(lambda example: example["inpaint_caption"] != "").take(NUM_SAMPLES) test_data = default_dataset.map( lambda x: preprocess_fn(x), remove_columns=default_dataset.column_names ) for data in test_data: print(data["prompts"]) `` ### Expected behavior The script should not hang or crash. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-50-generic-x86_64-with-glibc2.31 - Python version: 3.11.0 - `huggingface_hub` version: 0.25.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.2.0
null
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7357/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7357/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7356
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7356/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7356/comments
https://api.github.com/repos/huggingface/datasets/issues/7356/events
https://github.com/huggingface/datasets/issues/7356
2,770,095,103
I_kwDODunzps6lHEv_
7,356
How about adding a feature to pass the key when performing map on DatasetDict?
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "@lhoestq \r\nIf it's okay with you, can I work on this?", "Hi ! Can you give an example of what it would look like to use this new feature ?\r\n\r\nNote that currently you can already do\r\n\r\n```python\r\nds[\"train\"] = ds[\"train\"].map(process_train)\r\nds[\"test\"] = ds[\"test\"].map(process_test)\r\n```", "@lhoestq \nThanks for the response! \nLet me clarify what I'm looking for with an example:\n\nCurrently, we need to write separate processing functions or call .map() separately:\n```python\n# Current approach\ndef process_train(example):\n # Training-specific processing\n return example\n\ndef process_valid(example):\n # Validation-specific processing\n return example\n\nds[\"train\"] = ds[\"train\"].map(process_train)\nds[\"valid\"] = ds[\"valid\"].map(process_valid)\n```\n\nWhat I'm proposing is to have a single processing function that knows which split it's processing:\n\n```python\n# Proposed feature\ndef process(example, split_key):\n if split_key == \"train\":\n # Training-specific processing\n elif split_key == \"valid\":\n # Validation-specific processing\n return example\n\n# Using with_key=True to pass the split information\nds = ds.map(process, with_key=True)\n```\n\nThis becomes particularly useful when:\n1. The processing logic is heavily shared between splits but needs minor adjustments\n2. You want to maintain the processing logic in one place for better maintainability\n3. The processing function is complex and you want to avoid duplicating code\n\nSo I wanted to request this feature to achieve this kind of functionality. \nI've created a draft PR implementing this: https://github.com/huggingface/datasets/pull/7240/files\n", "I see ! I think it makes sense, and it's more readable than doing something like this:\r\n```python\r\nfrom functools import partial\r\nds = DatasetDict({key: ds[key].map(partial(process, split_key=key)) for key in ds})\r\n```\r\n\r\nPS: you named the argument `with_key` in your example, but it might be even clearer with it's named `with_split` maybe no ?", "@lhoestq I agree. \nIt seems better to use `with_split`.\nSo can I open a PR with this change?", "Sure !" ]
2025-01-06T08:13:52Z
2025-03-24T10:57:47Z
2025-03-24T10:57:47Z
CONTRIBUTOR
null
null
null
null
### Feature request Add a feature to pass the key of the DatasetDict when performing map ### Motivation I often preprocess using map on DatasetDict. Sometimes, I need to preprocess train and valid data differently depending on the task. So, I thought it would be nice to pass the key (like train, valid) when performing map on DatasetDict. What do you think? ### Your contribution I can submit a pull request to add the feature to pass the key of the DatasetDict when performing map.
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7356/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7356/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7355
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7355/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7355/comments
https://api.github.com/repos/huggingface/datasets/issues/7355/events
https://github.com/huggingface/datasets/issues/7355
2,768,958,211
I_kwDODunzps6lCvMD
7,355
Not available datasets[audio] on python 3.13
{ "avatar_url": "https://avatars.githubusercontent.com/u/70306948?v=4", "events_url": "https://api.github.com/users/sergiosinlimites/events{/privacy}", "followers_url": "https://api.github.com/users/sergiosinlimites/followers", "following_url": "https://api.github.com/users/sergiosinlimites/following{/other_user}", "gists_url": "https://api.github.com/users/sergiosinlimites/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sergiosinlimites", "id": 70306948, "login": "sergiosinlimites", "node_id": "MDQ6VXNlcjcwMzA2OTQ4", "organizations_url": "https://api.github.com/users/sergiosinlimites/orgs", "received_events_url": "https://api.github.com/users/sergiosinlimites/received_events", "repos_url": "https://api.github.com/users/sergiosinlimites/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sergiosinlimites/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sergiosinlimites/subscriptions", "type": "User", "url": "https://api.github.com/users/sergiosinlimites", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "It looks like an issue with `numba` which can't be installed on 3.13 ? `numba` is a dependency of `librosa`, used to decode audio files", "There seems that `uv` cannot resolve \n\n```bhas\nuv add -n datasets[audio] huggingface-hub[hf-transfer] transformers\n```\n\nThe problem is again `librosa` which depends on `numba` which has as a transitive dep `llvm-lite`\n\n```bash\nRuntimeError: Cannot install on Python version 3.13.3; only versions >=3.6,<3.10 are supported.\n# Python 3.9 works but is quite old and generates some problems with pytorch and numpy 2.0 ....\n```\n\nThe packaging seems problematic...", "Seems to be solved on https://github.com/huggingface/datasets/commit/161f99d94a1daf8380eabdb826048a0652510ee6#diff-60f61ab7a8d1910d86d9fda2261620314edcae5894d5aaa236b821c7256badd7L140" ]
2025-01-04T18:37:08Z
2025-06-28T00:26:19Z
null
NONE
null
null
null
null
### Describe the bug This is the error I got, it seems numba package does not support python 3.13 PS C:\Users\sergi\Documents> pip install datasets[audio] Defaulting to user installation because normal site-packages is not writeable Collecting datasets[audio] Using cached datasets-3.2.0-py3-none-any.whl.metadata (20 kB) ... (OTHER PACKAGES) Collecting numba>=0.51.0 (from librosa->datasets[audio]) Downloading numba-0.60.0.tar.gz (2.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.7/2.7 MB 44.1 MB/s eta 0:00:00 Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [24 lines of output] Traceback (most recent call last): File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module> main() ~~~~^^ File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) ~~~~^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\sergi\AppData\Local\Temp\pip-build-env-yauns_qh\overlay\Lib\site-packages\setuptools\build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\sergi\AppData\Local\Temp\pip-build-env-yauns_qh\overlay\Lib\site-packages\setuptools\build_meta.py", line 304, in _get_build_requires self.run_setup() ~~~~~~~~~~~~~~^^ RuntimeError: Cannot install on Python version 3.13.1; only versions >=3.9,<3.13 are supported. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. ### Steps to reproduce the bug 1. install python >=3.13 2. !pip install datasets[audio] ### Expected behavior I needed datasets[audio] in the python 3.13 ### Environment info python 3.13.1
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7355/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7355/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7354
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7354/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7354/comments
https://api.github.com/repos/huggingface/datasets/issues/7354/events
https://github.com/huggingface/datasets/issues/7354
2,768,955,917
I_kwDODunzps6lCuoN
7,354
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1394644?v=4", "events_url": "https://api.github.com/users/jamessdixon/events{/privacy}", "followers_url": "https://api.github.com/users/jamessdixon/followers", "following_url": "https://api.github.com/users/jamessdixon/following{/other_user}", "gists_url": "https://api.github.com/users/jamessdixon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jamessdixon", "id": 1394644, "login": "jamessdixon", "node_id": "MDQ6VXNlcjEzOTQ2NDQ=", "organizations_url": "https://api.github.com/users/jamessdixon/orgs", "received_events_url": "https://api.github.com/users/jamessdixon/received_events", "repos_url": "https://api.github.com/users/jamessdixon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jamessdixon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jamessdixon/subscriptions", "type": "User", "url": "https://api.github.com/users/jamessdixon", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "recreated .venv and run this: pip install diffusers[training]==0.11.1" ]
2025-01-04T18:30:17Z
2025-01-08T02:20:58Z
2025-01-08T02:20:58Z
NONE
null
null
null
null
### Describe the bug Following this tutorial: https://huggingface.co/docs/diffusers/en/tutorials/basic_training and running it locally using VSCode on my MacBook. The first line in the tutorial fails: from datasets import load_dataset dataset = load_dataset('huggan/smithsonian_butterflies_subset', split="train"). with this error: A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. and ImportError: numpy.core.multiarray failed to import. Does from datasets import load_dataset really use NumPy 1.x? ### Steps to reproduce the bug Open VSCode. create a new venv. Create a new ipynb file. Import pip install diffusers[training] try to run this line of code: from datasets import load_dataset ### Expected behavior data is loaded ### Environment info ran this: datasets-cli env and got A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1394644?v=4", "events_url": "https://api.github.com/users/jamessdixon/events{/privacy}", "followers_url": "https://api.github.com/users/jamessdixon/followers", "following_url": "https://api.github.com/users/jamessdixon/following{/other_user}", "gists_url": "https://api.github.com/users/jamessdixon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jamessdixon", "id": 1394644, "login": "jamessdixon", "node_id": "MDQ6VXNlcjEzOTQ2NDQ=", "organizations_url": "https://api.github.com/users/jamessdixon/orgs", "received_events_url": "https://api.github.com/users/jamessdixon/received_events", "repos_url": "https://api.github.com/users/jamessdixon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jamessdixon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jamessdixon/subscriptions", "type": "User", "url": "https://api.github.com/users/jamessdixon", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7354/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7354/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7347
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7347/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7347/comments
https://api.github.com/repos/huggingface/datasets/issues/7347/events
https://github.com/huggingface/datasets/issues/7347
2,760,282,339
I_kwDODunzps6khpDj
7,347
Converting Arrow to WebDataset TAR Format for Offline Use
{ "avatar_url": "https://avatars.githubusercontent.com/u/91370128?v=4", "events_url": "https://api.github.com/users/katie312/events{/privacy}", "followers_url": "https://api.github.com/users/katie312/followers", "following_url": "https://api.github.com/users/katie312/following{/other_user}", "gists_url": "https://api.github.com/users/katie312/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/katie312", "id": 91370128, "login": "katie312", "node_id": "MDQ6VXNlcjkxMzcwMTI4", "organizations_url": "https://api.github.com/users/katie312/orgs", "received_events_url": "https://api.github.com/users/katie312/received_events", "repos_url": "https://api.github.com/users/katie312/repos", "site_admin": false, "starred_url": "https://api.github.com/users/katie312/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/katie312/subscriptions", "type": "User", "url": "https://api.github.com/users/katie312", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Hi,\r\n\r\nI've downloaded an Arrow-formatted dataset offline using the hugggingface's datasets library by:\r\n\r\nimport json\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"pixparse/cc3m-wds\")\r\ndataset.save_to_disk(\"./cc3m_1\")\r\n\r\n\r\nnow I need to convert it to WebDataset's TAR format for offline data ingestion.\r\nIs there a straightforward method to achieve this conversion without an internet connection? Can I simply convert it by\r\n\r\ntar -cvf\r\n\r\n\r\nbtw, when I tried:\r\n\r\nimport webdataset as wds\r\nfrom huggingface_hub import get_token\r\nfrom torch.utils.data import DataLoader\r\n\r\nhf_token = get_token()\r\nurl = \"https://huggingface.co/datasets/timm/imagenet-12k-wds/resolve/main/imagenet12k-train-{{0000..1023}}.tar\"\r\nurl = f\"pipe:curl -s -L {url} -H 'Authorization:Bearer {hf_token}'\"\r\ndataset = wds.WebDataset(url).decode()\r\ndataset.save_to_disk(\"./cc3m_webdataset\")\r\n\r\n\r\nerror occured:\r\n\r\nAttributeError: 'WebDataset' object has no attribute 'save_to_disk'\r\n\r\n\r\nThanks a lot!\r\n\r\nMotivation\r\n\r\nConverting Arrow to WebDataset TAR Format\r\n\r\nYour contribution\r\n\r\nNo clue yet\r\n\r\n\r\nاحصل على Outlook لـ iOS<https://aka.ms/o0ukef>\r\n________________________________\r\nمن: katie312 ***@***.***>\r\n‏‏تم الإرسال: Friday, December 27, 2024 4:41:21 AM\r\nإلى: huggingface/datasets ***@***.***>\r\nنسخة: Subscribed ***@***.***>\r\n‏‏الموضوع: [huggingface/datasets] Converting Arrow to WebDataset TAR Format for Offline Use (Issue #7347)\r\n\r\n\r\nFeature request\r\n\r\nHi,\r\n\r\nI've downloaded an Arrow-formatted dataset offline using the hugggingface's datasets library by:\r\n\r\nimport json\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"pixparse/cc3m-wds\")\r\ndataset.save_to_disk(\"./cc3m_1\")\r\n\r\n\r\nnow I need to convert it to WebDataset's TAR format for offline data ingestion.\r\nIs there a straightforward method to achieve this conversion without an internet connection? Can I simply convert it by\r\n\r\ntar -cvf\r\n\r\n\r\nbtw, when I tried:\r\n\r\nimport webdataset as wds\r\nfrom huggingface_hub import get_token\r\nfrom torch.utils.data import DataLoader\r\n\r\nhf_token = get_token()\r\nurl = \"https://huggingface.co/datasets/timm/imagenet-12k-wds/resolve/main/imagenet12k-train-{{0000..1023}}.tar\"\r\nurl = f\"pipe:curl -s -L {url} -H 'Authorization:Bearer {hf_token}'\"\r\ndataset = wds.WebDataset(url).decode()\r\ndataset.save_to_disk(\"./cc3m_webdataset\")\r\n\r\n\r\nerror occured:\r\n\r\nAttributeError: 'WebDataset' object has no attribute 'save_to_disk'\r\n\r\n\r\nThanks a lot!\r\n\r\nMotivation\r\n\r\nConverting Arrow to WebDataset TAR Format\r\n\r\nYour contribution\r\n\r\nNo clue yet\r\n\r\n—\r\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/7347>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AQJDZ2X2RUIIULBJEF5R2HL2HSV4DAVCNFSM6AAAAABUH5QSLCVHI2DSMVQWIX3LMV43ASLTON2WKOZSG43DAMRYGIZTGOI>.\r\nYou are receiving this because you are subscribed to this thread.Message ID: ***@***.***>\r\n", "> now I need to convert it to WebDataset's TAR format for offline data ingestion.\r\n\r\nyou can directly download the .TAR files from HF using e.g. `huggingface-cli download` and load them in webdataset :)", "الفله سنه والطبقه يوم\r\n\r\nاحصل على Outlook لـ iOS<https://aka.ms/o0ukef>\r\n________________________________\r\nمن: Quentin Lhoest ***@***.***>\r\n‏‏تم الإرسال: Friday, December 27, 2024 4:14:43 PM\r\nإلى: huggingface/datasets ***@***.***>\r\nنسخة: hamad350 ***@***.***>; Comment ***@***.***>\r\n‏‏الموضوع: Re: [huggingface/datasets] Converting Arrow to WebDataset TAR Format for Offline Use (Issue #7347)\r\n\r\n\r\nnow I need to convert it to WebDataset's TAR format for offline data ingestion.\r\n\r\nyou can directly download the .TAR files from HF using e.g. huggingface-cli download and load them in webdataset :)\r\n\r\n—\r\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/7347#issuecomment-2563691570>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AQJDZ2R5M3Z7L2MZZYARYID2HVHEHAVCNFSM6AAAAABUH5QSLCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDKNRTGY4TCNJXGA>.\r\nYou are receiving this because you commented.Message ID: ***@***.***>\r\n", "> > now I need to convert it to WebDataset's TAR format for offline data ingestion.\r\n> \r\n> you can directly download the .TAR files from HF using e.g. `huggingface-cli download` and load them in webdataset :)\r\n\r\nThanks a lot! I completely forgot to use Hugging Face-CLI download. Thanks for the reminding!" ]
2024-12-27T01:40:44Z
2024-12-31T17:38:00Z
2024-12-28T15:38:03Z
NONE
null
null
null
null
### Feature request Hi, I've downloaded an Arrow-formatted dataset offline using the hugggingface's datasets library by: ``` import json from datasets import load_dataset dataset = load_dataset("pixparse/cc3m-wds") dataset.save_to_disk("./cc3m_1") ``` now I need to convert it to WebDataset's TAR format for offline data ingestion. Is there a straightforward method to achieve this conversion without an internet connection? Can I simply convert it by ``` tar -cvf ``` btw, when I tried: ``` import webdataset as wds from huggingface_hub import get_token from torch.utils.data import DataLoader hf_token = get_token() url = "https://huggingface.co/datasets/timm/imagenet-12k-wds/resolve/main/imagenet12k-train-{{0000..1023}}.tar" url = f"pipe:curl -s -L {url} -H 'Authorization:Bearer {hf_token}'" dataset = wds.WebDataset(url).decode() dataset.save_to_disk("./cc3m_webdataset") ``` error occured: ``` AttributeError: 'WebDataset' object has no attribute 'save_to_disk' ``` Thanks a lot! ### Motivation Converting Arrow to WebDataset TAR Format ### Your contribution No clue yet
{ "avatar_url": "https://avatars.githubusercontent.com/u/91370128?v=4", "events_url": "https://api.github.com/users/katie312/events{/privacy}", "followers_url": "https://api.github.com/users/katie312/followers", "following_url": "https://api.github.com/users/katie312/following{/other_user}", "gists_url": "https://api.github.com/users/katie312/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/katie312", "id": 91370128, "login": "katie312", "node_id": "MDQ6VXNlcjkxMzcwMTI4", "organizations_url": "https://api.github.com/users/katie312/orgs", "received_events_url": "https://api.github.com/users/katie312/received_events", "repos_url": "https://api.github.com/users/katie312/repos", "site_admin": false, "starred_url": "https://api.github.com/users/katie312/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/katie312/subscriptions", "type": "User", "url": "https://api.github.com/users/katie312", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7347/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7347/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7346
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7346/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7346/comments
https://api.github.com/repos/huggingface/datasets/issues/7346/events
https://github.com/huggingface/datasets/issues/7346
2,758,752,118
I_kwDODunzps6kbzd2
7,346
OSError: Invalid flatbuffers message.
{ "avatar_url": "https://avatars.githubusercontent.com/u/46232487?v=4", "events_url": "https://api.github.com/users/antecede/events{/privacy}", "followers_url": "https://api.github.com/users/antecede/followers", "following_url": "https://api.github.com/users/antecede/following{/other_user}", "gists_url": "https://api.github.com/users/antecede/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/antecede", "id": 46232487, "login": "antecede", "node_id": "MDQ6VXNlcjQ2MjMyNDg3", "organizations_url": "https://api.github.com/users/antecede/orgs", "received_events_url": "https://api.github.com/users/antecede/received_events", "repos_url": "https://api.github.com/users/antecede/repos", "site_admin": false, "starred_url": "https://api.github.com/users/antecede/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/antecede/subscriptions", "type": "User", "url": "https://api.github.com/users/antecede", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting, it looks like an issue with `pyarrow.ipc.open_stream`\r\n\r\nCan you try installing `datasets` from this pull request and see if it helps ? https://github.com/huggingface/datasets/pull/7348", "> Thanks for reporting, it looks like an issue with `pyarrow.ipc.open_stream`\r\n> \r\n> Can you try installing `datasets` from this pull request and see if it helps ? #7348\r\n\r\nThank you very much. Here, it also needed to be changed to `except (OSError, pa.lib.ArrowInvalid):`. And then the bug was fixed.\r\nhttps://github.com/huggingface/datasets/blob/2826a040a05e19fca894253b78a932d4fcb4a584/src/datasets/packaged_modules/arrow/arrow.py#L48", "Cool ! we will do a new release soon :) in the meantime you can use `datasets` from `main`" ]
2024-12-25T11:38:52Z
2025-01-09T14:25:29Z
2025-01-09T14:25:05Z
NONE
null
null
null
null
### Describe the bug When loading a large 2D data (1000 × 1152) with a large number of (2,000 data in this case) in `load_dataset`, the error message `OSError: Invalid flatbuffers message` is reported. When only 300 pieces of data of this size (1000 × 1152) are stored, they can be loaded correctly. When 2,000 2D arrays are stored in each file, about 100 files are generated, each with a file size of about 5-6GB. But when 300 2D arrays are stored in each file, **about 600 files are generated, which is too many files**. ### Steps to reproduce the bug error: ```python --------------------------------------------------------------------------- OSError Traceback (most recent call last) Cell In[2], line 4 1 from datasets import Dataset 2 from datasets import load_dataset ----> 4 real_dataset = load_dataset("arrow", data_files='tensorData/real_ResidueTensor/*', split="train")#.with_format("torch") # , split="train" 5 # sim_dataset = load_dataset("arrow", data_files='tensorData/sim_ResidueTensor/*', split="train").with_format("torch") 6 real_dataset File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/load.py:2151](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/load.py#line=2150), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2148 return builder_instance.as_streaming_dataset(split=split) 2150 # Download and prepare data -> 2151 builder_instance.download_and_prepare( 2152 download_config=download_config, 2153 download_mode=download_mode, 2154 verification_mode=verification_mode, 2155 num_proc=num_proc, 2156 storage_options=storage_options, 2157 ) 2159 # Build dataset for splits 2160 keep_in_memory = ( 2161 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2162 ) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py:924](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py#line=923), in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, dl_manager, base_path, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 922 if num_proc is not None: 923 prepare_split_kwargs["num_proc"] = num_proc --> 924 self._download_and_prepare( 925 dl_manager=dl_manager, 926 verification_mode=verification_mode, 927 **prepare_split_kwargs, 928 **download_and_prepare_kwargs, 929 ) 930 # Sync info 931 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py:978](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/builder.py#line=977), in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 976 split_dict = SplitDict(dataset_name=self.dataset_name) 977 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 978 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 980 # Checksums verification 981 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py:47](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py#line=46), in Arrow._split_generators(self, dl_manager) 45 with open(file, "rb") as f: 46 try: ---> 47 reader = pa.ipc.open_stream(f) 48 except pa.lib.ArrowInvalid: 49 reader = pa.ipc.open_file(f) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py:190](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py#line=189), in open_stream(source, options, memory_pool) 171 def open_stream(source, *, options=None, memory_pool=None): 172 """ 173 Create reader for Arrow streaming format. 174 (...) 188 A reader for the given source 189 """ --> 190 return RecordBatchStreamReader(source, options=options, 191 memory_pool=memory_pool) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py:52](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.py#line=51), in RecordBatchStreamReader.__init__(self, source, options, memory_pool) 50 def __init__(self, source, *, options=None, memory_pool=None): 51 options = _ensure_default_ipc_read_options(options) ---> 52 self._open(source, options=options, memory_pool=memory_pool) File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.pxi:1006](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/ipc.pxi#line=1005), in pyarrow.lib._RecordBatchStreamReader._open() File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi:155](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi#line=154), in pyarrow.lib.pyarrow_internal_check_status() File [~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi:92](http://localhost:8899/lab/tree/RTC%3Anew_world/esm3/~/miniforge3/envs/esmIne3/lib/python3.12/site-packages/pyarrow/error.pxi#line=91), in pyarrow.lib.check_status() OSError: Invalid flatbuffers message. ``` reproduce:Here is just an example result, the real 2D matrix is the output of the ESM large model, and the matrix size is approximate ```python import numpy as np import pyarrow as pa random_arrays_list = [np.random.rand(1000, 1152) for _ in range(2000)] table = pa.Table.from_pydict({ 'tensor': [tensor.tolist() for tensor in random_arrays_list] }) import pyarrow.feather as feather feather.write_feather(table, 'test.arrow') from datasets import load_dataset dataset = load_dataset("arrow", data_files='test.arrow', split="train") ``` ### Expected behavior `load_dataset` load the dataset as normal as `feather.read_feather` ```python import pyarrow.feather as feather feather.read_feather('tensorData/real_ResidueTensor/real_tensor_1.arrow') ``` Plus `load_dataset("parquet", data_files='test.arrow', split="train")` works fine ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.26.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7346/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7346/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7345
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7345/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7345/comments
https://api.github.com/repos/huggingface/datasets/issues/7345/events
https://github.com/huggingface/datasets/issues/7345
2,758,585,709
I_kwDODunzps6kbK1t
7,345
Different behaviour of IterableDataset.map vs Dataset.map with remove_columns
{ "avatar_url": "https://avatars.githubusercontent.com/u/12157034?v=4", "events_url": "https://api.github.com/users/vttrifonov/events{/privacy}", "followers_url": "https://api.github.com/users/vttrifonov/followers", "following_url": "https://api.github.com/users/vttrifonov/following{/other_user}", "gists_url": "https://api.github.com/users/vttrifonov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vttrifonov", "id": 12157034, "login": "vttrifonov", "node_id": "MDQ6VXNlcjEyMTU3MDM0", "organizations_url": "https://api.github.com/users/vttrifonov/orgs", "received_events_url": "https://api.github.com/users/vttrifonov/received_events", "repos_url": "https://api.github.com/users/vttrifonov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vttrifonov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vttrifonov/subscriptions", "type": "User", "url": "https://api.github.com/users/vttrifonov", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Good catch ! Do you think you can open a PR to fix this issue ?" ]
2024-12-25T07:36:48Z
2025-01-07T11:56:42Z
2025-01-07T11:56:42Z
CONTRIBUTOR
null
null
null
null
### Describe the bug The following code ```python import datasets as hf ds1 = hf.Dataset.from_list([{'i': i} for i in [0,1]]) #ds1 = ds1.to_iterable_dataset() ds2 = ds1.map( lambda i: {'i': i+1}, input_columns = ['i'], remove_columns = ['i'] ) list(ds2) ``` produces ```python [{'i': 1}, {'i': 2}] ``` as expected. If the line that converts `ds1` to iterable is uncommented so that the `ds2` is a map of an `IterableDataset`, the result is ```python [{},{}] ``` I expected the output to be the same as before. It seems that in the second case the removed column is not added back into the output. The issue seems to be [here](https://github.com/huggingface/datasets/blob/6c6a82a573f946c4a81069f56446caed15cee9c2/src/datasets/iterable_dataset.py#L1093): the columns are removed after the mapping which is not what we want (or what the [documentation says](https://github.com/huggingface/datasets/blob/6c6a82a573f946c4a81069f56446caed15cee9c2/src/datasets/iterable_dataset.py#L2370)) because we want the columns removed from the transformed example but then added if the map produced them. This is `datasets==3.2.0` and `python==3.10` ### Steps to reproduce the bug see above ### Expected behavior see above ### Environment info see above
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7345/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7345/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7344
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7344/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7344/comments
https://api.github.com/repos/huggingface/datasets/issues/7344/events
https://github.com/huggingface/datasets/issues/7344
2,754,735,951
I_kwDODunzps6kMe9P
7,344
HfHubHTTPError: 429 Client Error: Too Many Requests for URL when trying to access SlimPajama-627B or c4 on TPUs
{ "avatar_url": "https://avatars.githubusercontent.com/u/9397233?v=4", "events_url": "https://api.github.com/users/clankur/events{/privacy}", "followers_url": "https://api.github.com/users/clankur/followers", "following_url": "https://api.github.com/users/clankur/following{/other_user}", "gists_url": "https://api.github.com/users/clankur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/clankur", "id": 9397233, "login": "clankur", "node_id": "MDQ6VXNlcjkzOTcyMzM=", "organizations_url": "https://api.github.com/users/clankur/orgs", "received_events_url": "https://api.github.com/users/clankur/received_events", "repos_url": "https://api.github.com/users/clankur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/clankur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/clankur/subscriptions", "type": "User", "url": "https://api.github.com/users/clankur", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! This is due to your old version of `datasets` which calls HF with `expand=True`, an option that is strongly rate limited.\r\n\r\nRecent versions of `datasets` don't rely on this anymore, you can fix your issue by upgrading `datasets` :)\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nYou can also get maximum HF availability on your compute nodes with HF Enterprise (see [network security features](https://huggingface.co/docs/hub/enterprise-hub-network-security))", "Upgrading fixed the issue for me. Thanks! " ]
2024-12-22T16:30:07Z
2025-01-15T05:32:00Z
2025-01-15T05:31:58Z
NONE
null
null
null
null
### Describe the bug I am trying to run some trainings on Google's TPUs using Huggingface's DataLoader on [SlimPajama-627B](https://huggingface.co/datasets/cerebras/SlimPajama-627B) and [c4](https://huggingface.co/datasets/allenai/c4), but I end up running into `429 Client Error: Too Many Requests for URL` error when I call `load_dataset`. The even odder part is that I am able to sucessfully run trainings with the [wikitext dataset](https://huggingface.co/datasets/Salesforce/wikitext). Is there something I need to setup to specifically train with SlimPajama or C4 with TPUs because I am not clear why I am getting these errors. ### Steps to reproduce the bug These are the commands you could run to produce the error below but you will require a ClearML account (you can create one [here](https://app.clear.ml/login?redirect=%2Fdashboard)) with a queue setup to run on Google TPUs ```bash git clone https://github.com/clankur/muGPT.git cd muGPT python -m train --config-name=slim_v4-32_84m.yaml +training.queue={NAME_OF_CLEARML_QUEUE} ``` The error I see: ``` Traceback (most recent call last): File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/clearml/binding/hydra_bind.py", line 230, in _patched_task_function return task_function(a_config, *a_args, **a_kwargs) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/train.py", line 1037, in main main_contained(config, logger) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/train.py", line 840, in main_contained loader = get_loader("train", config.training_data, config.training.tokens) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/input_loader.py", line 549, in get_loader return HuggingFaceDataLoader(split, config, token_batch_params) File "/home/clankur/.clearml/venvs-builds/3.10/task_repository/muGPT.git/input_loader.py", line 395, in __init__ self.dataset = load_dataset( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 2112, in load_dataset builder_instance = load_dataset_builder( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1798, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1495, in dataset_module_factory raise e1 from None File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1479, in dataset_module_factory ).get_module() File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/load.py", line 1034, in get_module else get_data_patterns(base_path, download_config=self.download_config) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/data_files.py", line 457, in get_data_patterns return _get_data_files_patterns(resolver) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/data_files.py", line 248, in _get_data_files_patterns data_files = pattern_resolver(pattern) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/datasets/data_files.py", line 340, in resolve_pattern for filepath, info in fs.glob(pattern, detail=True).items() File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 409, in glob return super().glob(path, **kwargs) File "/home/clankur/.clearml/venvs-builds/3.10/lib/python3.10/site-packages/fsspec/spec.py", line 602, in glob allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 429, in find out = self._ls_tree(path, recursive=True, refresh=refresh, revision=resolved_path.revision, **kwargs) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 358, in _ls_tree self._ls_tree( File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 375, in _ls_tree for path_info in tree: File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 3080, in list_repo_tree for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}): File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/utils/_pagination.py", line 46, in paginate hf_raise_for_status(r) File "/home/clankur/conda/envs/jax/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/api/datasets/cerebras/SlimPajama-627B/tree/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543?recursive=True&expand=True&cursor=ZXlKbWFXeGxYMjVoYldVaU9pSjBaWE4wTDJOb2RXNXJNUzlsZUdGdGNHeGxYMmh2YkdSdmRYUmZPVFEzTG1wemIyNXNMbnB6ZENKOTo2MjUw (Request ID: Root=1-67673de9-1413900606ede7712b08ef2c;1304c09c-3e69-4222-be14-f10ee709d49c) maximum queue size reached Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace. ``` ### Expected behavior I'd expect the DataLoader to load from the SlimPajama-627B and c4 dataset without issue. ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-5.8.0-1035-gcp-x86_64-with-glibc2.31 - Python version: 3.10.16 - Huggingface_hub version: 0.26.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/9397233?v=4", "events_url": "https://api.github.com/users/clankur/events{/privacy}", "followers_url": "https://api.github.com/users/clankur/followers", "following_url": "https://api.github.com/users/clankur/following{/other_user}", "gists_url": "https://api.github.com/users/clankur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/clankur", "id": 9397233, "login": "clankur", "node_id": "MDQ6VXNlcjkzOTcyMzM=", "organizations_url": "https://api.github.com/users/clankur/orgs", "received_events_url": "https://api.github.com/users/clankur/received_events", "repos_url": "https://api.github.com/users/clankur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/clankur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/clankur/subscriptions", "type": "User", "url": "https://api.github.com/users/clankur", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7344/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7344/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7343
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7343/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7343/comments
https://api.github.com/repos/huggingface/datasets/issues/7343/events
https://github.com/huggingface/datasets/issues/7343
2,750,525,823
I_kwDODunzps6j8bF_
7,343
[Bug] Inconsistent behavior of data_files and data_dir in load_dataset method.
{ "avatar_url": "https://avatars.githubusercontent.com/u/74161960?v=4", "events_url": "https://api.github.com/users/JasonCZH4/events{/privacy}", "followers_url": "https://api.github.com/users/JasonCZH4/followers", "following_url": "https://api.github.com/users/JasonCZH4/following{/other_user}", "gists_url": "https://api.github.com/users/JasonCZH4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JasonCZH4", "id": 74161960, "login": "JasonCZH4", "node_id": "MDQ6VXNlcjc0MTYxOTYw", "organizations_url": "https://api.github.com/users/JasonCZH4/orgs", "received_events_url": "https://api.github.com/users/JasonCZH4/received_events", "repos_url": "https://api.github.com/users/JasonCZH4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JasonCZH4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JasonCZH4/subscriptions", "type": "User", "url": "https://api.github.com/users/JasonCZH4", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! `data_files` with a list is equivalent to `data_files={\"train\": data_files}` with a train test only.\r\n\r\nWhen no split are specified, they are inferred based on file names, and files with no apparent split are ignored", "Thanks for your reply!\r\n`files with no apparent split are ignored`. Is there a option that I can choose to ignored it or not as I mention aboved? Thanks!", "To include all the files, the best way is to pass `data_files` yourself. There is no option to disable split detection at the moment", "Thanks! I hope you guys can consider adding this option in the future. :)" ]
2024-12-19T14:31:27Z
2025-01-03T15:54:09Z
2025-01-03T15:54:09Z
NONE
null
null
null
null
### Describe the bug Inconsistent operation of data_files and data_dir in load_dataset method. ### Steps to reproduce the bug # First I have three files, named 'train.json', 'val.json', 'test.json'. Each one has a simple dict `{text:'aaa'}`. Their path are `/data/train.json`, `/data/val.json`, `/data/test.json` I load dataset with `data_files` argument: ```py files = [os.path.join('./data',file) for file in os.listdir('./data')] ds = load_dataset( path='json', data_files=files,) ``` And I get: ```py DatasetDict({ train: Dataset({ features: ['text'], num_rows: 3 }) }) ``` However, If I load dataset with `data_dir` argument: ```py ds = load_dataset( path='json', data_dir='./data',) ``` And I get: ```py DatasetDict({ train: Dataset({ features: ['text'], num_rows: 1 }) validation: Dataset({ features: ['text'], num_rows: 1 }) test: Dataset({ features: ['text'], num_rows: 1 }) }) ``` Two results are not the same. Their behaviors are not equal, even if the statement [here](https://github.com/huggingface/datasets/blob/d0c152a979d91cc34b605c0298aebc650ab7dd27/src/datasets/load.py#L1790) said that their behaviors are equal. # Second If some filename include 'test' while others do not, `load_dataset` only return `test` dataset and others files are **abandoned**. Given two files named `test.json` and `1.json` Each one has a simple dict `{text:'aaa'}`. I load the dataset using: ```py ds = load_dataset( path='json', data_dir='./data',) ``` Only `test` is returned, `1.json` is missing: ```py DatasetDict({ test: Dataset({ features: ['text'], num_rows: 1 }) }) ``` Things do not change even I manually set `split='train'` ### Expected behavior 1. Fix the above bugs. 2. Although the document says that load_dataset method will `Find which file goes into which split (e.g. train/test) based on file and directory names or on the YAML configuration`, I hope I can manually decide whether to do so. Sometimes users may accidentally put a `test` string in the filename but they just want a single `train` dataset. If the number of files in `data_dir` is huge, it's not easy to find out what cause the second situation metioned above. ### Environment info datasets==3.2.0 Ubuntu18.84
{ "avatar_url": "https://avatars.githubusercontent.com/u/74161960?v=4", "events_url": "https://api.github.com/users/JasonCZH4/events{/privacy}", "followers_url": "https://api.github.com/users/JasonCZH4/followers", "following_url": "https://api.github.com/users/JasonCZH4/following{/other_user}", "gists_url": "https://api.github.com/users/JasonCZH4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JasonCZH4", "id": 74161960, "login": "JasonCZH4", "node_id": "MDQ6VXNlcjc0MTYxOTYw", "organizations_url": "https://api.github.com/users/JasonCZH4/orgs", "received_events_url": "https://api.github.com/users/JasonCZH4/received_events", "repos_url": "https://api.github.com/users/JasonCZH4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JasonCZH4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JasonCZH4/subscriptions", "type": "User", "url": "https://api.github.com/users/JasonCZH4", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7343/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7343/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7337
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7337/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7337/comments
https://api.github.com/repos/huggingface/datasets/issues/7337/events
https://github.com/huggingface/datasets/issues/7337
2,744,877,569
I_kwDODunzps6jm4IB
7,337
One or several metadata.jsonl were found, but not in the same directory or in a parent directory of
{ "avatar_url": "https://avatars.githubusercontent.com/u/67250532?v=4", "events_url": "https://api.github.com/users/mst272/events{/privacy}", "followers_url": "https://api.github.com/users/mst272/followers", "following_url": "https://api.github.com/users/mst272/following{/other_user}", "gists_url": "https://api.github.com/users/mst272/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mst272", "id": 67250532, "login": "mst272", "node_id": "MDQ6VXNlcjY3MjUwNTMy", "organizations_url": "https://api.github.com/users/mst272/orgs", "received_events_url": "https://api.github.com/users/mst272/received_events", "repos_url": "https://api.github.com/users/mst272/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mst272/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mst272/subscriptions", "type": "User", "url": "https://api.github.com/users/mst272", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hmmm I double checked in the source code and I found a contradiction: in the current implementation the metadata file is ignored if it's not in the same archive as the zip image somehow:\r\n\r\nhttps://github.com/huggingface/datasets/blob/caa705e8bf4bedf1a956f48b545283b2ca14170a/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py#L352-L353\r\n\r\nin the tests suite the metadata file is placed inside the archive:\r\n\r\nhttps://github.com/huggingface/datasets/blob/caa705e8bf4bedf1a956f48b545283b2ca14170a/tests/packaged_modules/test_imagefolder.py#L223-L223\r\n\r\nThanks for reporting this issue, it seems the documentation is wrong and we never implemented the support for zip + metadata outside zip. We might rewrite part of this code soon though to make it more flexible, it can be a good occasion to fix this. In the meantime feel free to open a PR to fix the documentation if you'd like" ]
2024-12-17T12:58:43Z
2025-01-03T15:28:13Z
null
NONE
null
null
null
null
### Describe the bug ImageFolder with metadata.jsonl error. I downloaded liuhaotian/LLaVA-CC3M-Pretrain-595K locally from Hugging Face. According to the tutorial in https://huggingface.co/docs/datasets/image_dataset#image-captioning, only put images.zip and metadata.jsonl containing information in the same folder. However, after loading, an error was reported: One or several metadata.jsonl were found, but not in the same directory or in a parent directory of. The data in my jsonl file is as follows: > {"id": "GCC_train_002448550", "file_name": "GCC_train_002448550.jpg", "conversations": [{"from": "human", "value": "<image>\nProvide a brief description of the given image."}, {"from": "gpt", "value": "a view of a city , where the flyover was proposed to reduce the increasing traffic on thursday ."}]} ### Steps to reproduce the bug from datasets import load_dataset image = load_dataset("imagefolder",data_dir='data/opensource_data') ### Expected behavior success ### Environment info datasets==3.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7337/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7337/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7336
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7336/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7336/comments
https://api.github.com/repos/huggingface/datasets/issues/7336/events
https://github.com/huggingface/datasets/issues/7336
2,744,746,456
I_kwDODunzps6jmYHY
7,336
Clarify documentation or Create DatasetCard
{ "avatar_url": "https://avatars.githubusercontent.com/u/145011209?v=4", "events_url": "https://api.github.com/users/August-murr/events{/privacy}", "followers_url": "https://api.github.com/users/August-murr/followers", "following_url": "https://api.github.com/users/August-murr/following{/other_user}", "gists_url": "https://api.github.com/users/August-murr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/August-murr", "id": 145011209, "login": "August-murr", "node_id": "U_kgDOCKSyCQ", "organizations_url": "https://api.github.com/users/August-murr/orgs", "received_events_url": "https://api.github.com/users/August-murr/received_events", "repos_url": "https://api.github.com/users/August-murr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/August-murr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/August-murr/subscriptions", "type": "User", "url": "https://api.github.com/users/August-murr", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-12-17T12:01:00Z
2024-12-17T12:01:00Z
null
NONE
null
null
null
null
### Feature request I noticed that you can use a Model Card instead of a Dataset Card when pushing a dataset to the Hub, but this isn’t clearly mentioned in [the docs.](https://huggingface.co/docs/datasets/dataset_card) - Update the docs to clarify that a Model Card can work for datasets too. - It might be worth creating a dedicated DatasetCard module, similar to the ModelCard module, for consistency and better support. Not sure if this belongs here or on the [Hub repo](https://github.com/huggingface/huggingface_hub), but thought I’d bring it up! ### Motivation I just spent an hour like on [this issue](https://github.com/huggingface/trl/pull/2491) trying to create a `DatasetCard` for a script. ### Your contribution might later
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7336/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7336/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7335
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7335/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7335/comments
https://api.github.com/repos/huggingface/datasets/issues/7335/events
https://github.com/huggingface/datasets/issues/7335
2,743,437,260
I_kwDODunzps6jhYfM
7,335
Too many open files: '/root/.cache/huggingface/token'
{ "avatar_url": "https://avatars.githubusercontent.com/u/17604849?v=4", "events_url": "https://api.github.com/users/kopyl/events{/privacy}", "followers_url": "https://api.github.com/users/kopyl/followers", "following_url": "https://api.github.com/users/kopyl/following{/other_user}", "gists_url": "https://api.github.com/users/kopyl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kopyl", "id": 17604849, "login": "kopyl", "node_id": "MDQ6VXNlcjE3NjA0ODQ5", "organizations_url": "https://api.github.com/users/kopyl/orgs", "received_events_url": "https://api.github.com/users/kopyl/received_events", "repos_url": "https://api.github.com/users/kopyl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kopyl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kopyl/subscriptions", "type": "User", "url": "https://api.github.com/users/kopyl", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-12-16T21:30:24Z
2024-12-16T21:30:24Z
null
NONE
null
null
null
null
### Describe the bug I ran this code: ``` from datasets import load_dataset dataset = load_dataset("common-canvas/commoncatalog-cc-by", cache_dir="/datadrive/datasets/cc", num_proc=1000) ``` And got this error. Before it was some other file though (lie something...incomplete) runnting ``` ulimit -n 8192 ``` did not help at all. ### Steps to reproduce the bug Run the code i sent ### Expected behavior Should be no errors ### Environment info linux, jupyter lab.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7335/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7335/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7334
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7334/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7334/comments
https://api.github.com/repos/huggingface/datasets/issues/7334/events
https://github.com/huggingface/datasets/issues/7334
2,740,266,503
I_kwDODunzps6jVSYH
7,334
TypeError: Value.__init__() missing 1 required positional argument: 'dtype'
{ "avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4", "events_url": "https://api.github.com/users/ghost/events{/privacy}", "followers_url": "https://api.github.com/users/ghost/followers", "following_url": "https://api.github.com/users/ghost/following{/other_user}", "gists_url": "https://api.github.com/users/ghost/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ghost", "id": 10137, "login": "ghost", "node_id": "MDQ6VXNlcjEwMTM3", "organizations_url": "https://api.github.com/users/ghost/orgs", "received_events_url": "https://api.github.com/users/ghost/received_events", "repos_url": "https://api.github.com/users/ghost/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ghost/subscriptions", "type": "User", "url": "https://api.github.com/users/ghost", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "same error \n```\ndata = load_dataset('/opt/deepseek_R1_finetune/hf_datasets/openai/gsm8k', 'main')[split] \n```", "> same error\n> \n> ```\n> data = load_dataset('/opt/deepseek_R1_finetune/hf_datasets/openai/gsm8k', 'main')[split] \n> ```\n\nhttps://github.com/huggingface/open-r1/issues/204 this help me", "Solved by delete `dataset_infos.json` file in dataset dir, or you can transfer datasets from Hugginface to Modelscope by [hf-ms-transfer](https://github.com/wa008/hf-ms-transfer), which will solve this problem by default. " ]
2024-12-15T04:08:46Z
2025-07-10T03:32:36Z
null
NONE
null
null
null
null
### Describe the bug ds = load_dataset( "./xxx.py", name="default", split="train", ) The datasets does not support debugging locally anymore... ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset( "./repo.py", name="default", split="train", ) for item in ds: print(item) ``` It works fine for "username/repo", but it does not work for "./repo.py" when debugging locally... Running above code template will report TypeError: Value.__init__() missing 1 required positional argument: 'dtype' ### Expected behavior fix this bug ### Environment info python 3.10 datasets==2.21
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7334/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7334/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7327
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7327/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7327/comments
https://api.github.com/repos/huggingface/datasets/issues/7327/events
https://github.com/huggingface/datasets/issues/7327
2,738,514,909
I_kwDODunzps6jOmvd
7,327
.map() is not caching and ram goes OOM
{ "avatar_url": "https://avatars.githubusercontent.com/u/7136076?v=4", "events_url": "https://api.github.com/users/simeneide/events{/privacy}", "followers_url": "https://api.github.com/users/simeneide/followers", "following_url": "https://api.github.com/users/simeneide/following{/other_user}", "gists_url": "https://api.github.com/users/simeneide/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/simeneide", "id": 7136076, "login": "simeneide", "node_id": "MDQ6VXNlcjcxMzYwNzY=", "organizations_url": "https://api.github.com/users/simeneide/orgs", "received_events_url": "https://api.github.com/users/simeneide/received_events", "repos_url": "https://api.github.com/users/simeneide/repos", "site_admin": false, "starred_url": "https://api.github.com/users/simeneide/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/simeneide/subscriptions", "type": "User", "url": "https://api.github.com/users/simeneide", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I have the same issue - any update on this?" ]
2024-12-13T14:22:56Z
2025-02-10T10:42:38Z
null
NONE
null
null
null
null
### Describe the bug Im trying to run a fairly simple map that is converting a dataset into numpy arrays. however, it just piles up on memory and doesnt write to disk. Ive tried multiple cache techniques such as specifying the cache dir, setting max mem, +++ but none seem to work. What am I missing here? ### Steps to reproduce the bug ``` from pydub import AudioSegment import io import base64 import numpy as np import os CACHE_PATH = "/mnt/extdisk/cache" # "/root/.cache/huggingface/"# os.environ["HF_HOME"] = CACHE_PATH import datasets import logging logger = logging.getLogger() logger.setLevel(logging.INFO) # Create a handler for Jupyter notebook handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) #datasets.config.IN_MEMORY_MAX_SIZE= 1000#*(2**30) #50 gb print(datasets.config.HF_CACHE_HOME) print(datasets.config.HF_DATASETS_CACHE) # Decode the base64 string into bytes def convert_mp3_to_audio_segment(example): """ example = ds['train'][0] """ try: audio_data_bytes = base64.b64decode(example['audio']) # Use pydub to load the MP3 audio from the decoded bytes audio_segment = AudioSegment.from_file(io.BytesIO(audio_data_bytes), format="mp3") # Resample to 24_000 audio_segment = audio_segment.set_frame_rate(24_000) audio = {'sampling_rate' : audio_segment.frame_rate, 'array' : np.array(audio_segment.get_array_of_samples(), dtype="float")} del audio_segment duration = len(audio['array']) / audio['sampling_rate'] except Exception as e: logger.warning(f"Failed to convert audio for {example['id']}. Error: {e}") audio = {'sampling_rate' : 0, 'array' : np.array([]), duration : 0} return {'audio' : audio, 'duration' : duration} ds = datasets.load_dataset("NbAiLab/nb_distil_speech_noconcat_stortinget", cache_dir=CACHE_PATH, keep_in_memory=False) #%% num_proc=32 ds_processed = ( ds #.select(range(10)) .map(convert_mp3_to_audio_segment, num_proc=num_proc, desc="Converting mp3 to audio segment") #, cache_file_name=f"{CACHE_PATH}/stortinget_audio" # , cache_file_name="test" ) ``` ### Expected behavior the map should write to disk ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.8.0-45-generic-x86_64-with-glibc2.39 - Python version: 3.12.7 - `huggingface_hub` version: 0.26.3 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7327/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7327/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7326
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7326/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7326/comments
https://api.github.com/repos/huggingface/datasets/issues/7326/events
https://github.com/huggingface/datasets/issues/7326
2,738,188,902
I_kwDODunzps6jNXJm
7,326
Remove upper bound for fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/26092524?v=4", "events_url": "https://api.github.com/users/fellhorn/events{/privacy}", "followers_url": "https://api.github.com/users/fellhorn/followers", "following_url": "https://api.github.com/users/fellhorn/following{/other_user}", "gists_url": "https://api.github.com/users/fellhorn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fellhorn", "id": 26092524, "login": "fellhorn", "node_id": "MDQ6VXNlcjI2MDkyNTI0", "organizations_url": "https://api.github.com/users/fellhorn/orgs", "received_events_url": "https://api.github.com/users/fellhorn/received_events", "repos_url": "https://api.github.com/users/fellhorn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fellhorn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fellhorn/subscriptions", "type": "User", "url": "https://api.github.com/users/fellhorn", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Unfortunately `fsspec` versioning allows breaking changes across version and there is no way we can keep it without constrains at the moment. It already broke `datasets` once in the past. Maybe one day once `fsspec` decides on a stable and future proof API but I don't think this will happen anytime soon\r\n\r\nedit: bumped to 2024.10.0 in https://github.com/huggingface/datasets/pull/7352" ]
2024-12-13T11:35:12Z
2025-01-03T15:34:37Z
null
NONE
null
null
null
null
### Describe the bug As also raised by @cyyever in https://github.com/huggingface/datasets/pull/7296 and @NeilGirdhar in https://github.com/huggingface/datasets/commit/d5468836fe94e8be1ae093397dd43d4a2503b926#commitcomment-140952162 , `datasets` has a problematic version constraint on `fsspec`. In our case this causes (unnecessary?) troubles due to a race condition bug in that version of the corresponding `gcsfs` plugin, that causes deadlocks: https://github.com/fsspec/gcsfs/pull/643 We just use a version override to ignore the constraint from `datasets`, but imho the version constraint could just be removed in the first place? The last few PRs bumping the upper bound were basically uneventful: * https://github.com/huggingface/datasets/pull/7219 * https://github.com/huggingface/datasets/pull/6921 * https://github.com/huggingface/datasets/pull/6747 ### Steps to reproduce the bug - ### Expected behavior Installing `fsspec>=2024.10.0` along `datasets` should be possible without overwriting constraints. ### Environment info All recent datasets versions
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 3, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7326/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7326/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7323
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7323/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7323/comments
https://api.github.com/repos/huggingface/datasets/issues/7323/events
https://github.com/huggingface/datasets/issues/7323
2,736,008,698
I_kwDODunzps6jFC36
7,323
Unexpected cache behaviour using load_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/74349080?v=4", "events_url": "https://api.github.com/users/Moritz-Wirth/events{/privacy}", "followers_url": "https://api.github.com/users/Moritz-Wirth/followers", "following_url": "https://api.github.com/users/Moritz-Wirth/following{/other_user}", "gists_url": "https://api.github.com/users/Moritz-Wirth/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Moritz-Wirth", "id": 74349080, "login": "Moritz-Wirth", "node_id": "MDQ6VXNlcjc0MzQ5MDgw", "organizations_url": "https://api.github.com/users/Moritz-Wirth/orgs", "received_events_url": "https://api.github.com/users/Moritz-Wirth/received_events", "repos_url": "https://api.github.com/users/Moritz-Wirth/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Moritz-Wirth/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Moritz-Wirth/subscriptions", "type": "User", "url": "https://api.github.com/users/Moritz-Wirth", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Since `datasets` 3.x, the `datasets` specific files are in `cache_dir=` and the HF files are cached using `huggingface_hub` and you can set its cache directory using the `HF_HOME` environment variable.\r\n\r\nThey are independent, for example you can delete the Hub cache (containing downloaded files) but still reload your cached datasets from the `datasets` cache (containing prepared datasets in Arrow format)" ]
2024-12-12T14:03:00Z
2025-01-31T11:34:24Z
2025-01-31T11:34:24Z
NONE
null
null
null
null
### Describe the bug Following the (Cache management)[https://huggingface.co/docs/datasets/en/cache] docu and previous behaviour from datasets version 2.18.0, one is able to change the cache directory. Previously, all downloaded/extracted/etc files were found in this folder. As i have recently update to the latest version this is not the case anymore. Downloaded files are stored in `~/.cache/huggingface/hub`. Providing the `cache_dir` argument in `load_dataset` the cache directory is created and there are some files but the bulk is still in `~/.cache/huggingface/hub`. I believe this could be solved by adding the cache_dir argument [here](https://github.com/huggingface/datasets/blob/fdda5585ab18ea1292547f36c969d12c408ab842/src/datasets/utils/file_utils.py#L188) ### Steps to reproduce the bug For example using https://huggingface.co/datasets/ashraq/esc50: ```python from datasets import load_dataset ds = load_dataset("ashraq/esc50", "default", cache_dir="~/custom/cache/path/esc50") ``` ### Expected behavior I would expect the bulk of files related to the dataset to be stored somewhere in `~/custom/cache/path/esc50`, but it seems they are in `~/.cache/huggingface/hub/datasets--ashraq--esc50`. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-503.15.1.el9_5.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.14 - `huggingface_hub` version: 0.26.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/74349080?v=4", "events_url": "https://api.github.com/users/Moritz-Wirth/events{/privacy}", "followers_url": "https://api.github.com/users/Moritz-Wirth/followers", "following_url": "https://api.github.com/users/Moritz-Wirth/following{/other_user}", "gists_url": "https://api.github.com/users/Moritz-Wirth/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Moritz-Wirth", "id": 74349080, "login": "Moritz-Wirth", "node_id": "MDQ6VXNlcjc0MzQ5MDgw", "organizations_url": "https://api.github.com/users/Moritz-Wirth/orgs", "received_events_url": "https://api.github.com/users/Moritz-Wirth/received_events", "repos_url": "https://api.github.com/users/Moritz-Wirth/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Moritz-Wirth/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Moritz-Wirth/subscriptions", "type": "User", "url": "https://api.github.com/users/Moritz-Wirth", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7323/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7323/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7322
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7322/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7322/comments
https://api.github.com/repos/huggingface/datasets/issues/7322/events
https://github.com/huggingface/datasets/issues/7322
2,732,254,868
I_kwDODunzps6i2uaU
7,322
ArrowInvalid: JSON parse error: Column() changed from object to array in row 0
{ "avatar_url": "https://avatars.githubusercontent.com/u/41767521?v=4", "events_url": "https://api.github.com/users/Polarisamoon/events{/privacy}", "followers_url": "https://api.github.com/users/Polarisamoon/followers", "following_url": "https://api.github.com/users/Polarisamoon/following{/other_user}", "gists_url": "https://api.github.com/users/Polarisamoon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Polarisamoon", "id": 41767521, "login": "Polarisamoon", "node_id": "MDQ6VXNlcjQxNzY3NTIx", "organizations_url": "https://api.github.com/users/Polarisamoon/orgs", "received_events_url": "https://api.github.com/users/Polarisamoon/received_events", "repos_url": "https://api.github.com/users/Polarisamoon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Polarisamoon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Polarisamoon/subscriptions", "type": "User", "url": "https://api.github.com/users/Polarisamoon", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! `datasets` uses Arrow under the hood which expects each column and array to have fixed types that don't change across rows of a dataset, which is why we get this error. This dataset in particular doesn't have a format compatible with Arrow unfortunately. Don't hesitate to open a discussion or PR on HF to fix the dataset", "@lhoestq Is it correct to assume that most multimodal datasets with variable number of images across conversations are not compatible with Arrow ? \n\nI’m running into a problem while trying to format multimodal datasets (image + text) using the Hugging Face datasets library. Specifically, I’m working with a structure where conversations include both images and text messages. When I convert my dataset from a Python dict to a Hugging Face Dataset, I’m seeing unexpected None values being inserted for some fields that aren’t relevant for a given message (e.g., \"text\": None in image messages). Here’s what seems to be happening:\n\n🔍 What’s going wrong\n\nHugging Face datasets (backed by Apache Arrow) tries to flatten the schema across all samples. That means it enforces a fixed set of fields across the dataset – even if some of them are None for a given entry. Since my dataset contains heterogeneous conversation messages (some with images, others with text), Arrow is injecting None for whichever attributes don’t exist in each message type to preserve a unified schema.\n\nThis results in a lot of meaningless or misleading Nones across the dataset, and breaks logic further down the pipeline – in particular, it causes the qwen_vl_utils functions (like process_vision_info) to crash or misbehave.\n\n\n🤔 Workarounds considered\n\nI could stick with raw JSON, which preserves the heterogeneous structure properly. But that means giving up all the nice features of datasets and Arrow (e.g. streaming, map/filter, etc.), which feels like a shame.\n\n❓My question\n\nDo you know of a clean way to define a flexible schema with Hugging Face Datasets – maybe using nested structures or dynamic fields – so that each conversation message doesn’t get forced into a flat structure with irrelevant keys? Or should I just stick with JSON for this kind of multimodal case?\n\nLet me know if you’ve run into this before or have any tips!\n", "Datasets without fixed types are harder to use in many data frameworks unfortunately. You will have to handle the case with None values if you want to use Arrow/`datasets` (or any other framework using Arrow like spark, ray, dask). **IMO the short term solution is to fix qwen_vl_utils / process_vision_info.**\n\nAlternatively we can explore adding the Arrow `Json` type to `datasets`, but doesn't allow having image types in the Json object so I don't think this is the right solution.", "I totally share the analysis, I am happy to try to help with this! I am currently using Unsloth so it is the `UnslothVisionDataCollator` which has almost the same logic as `qwen_vl_utils.process_vision_info`. Is there a Huggingface class I could patch too ? " ]
2024-12-11T08:41:39Z
2025-07-15T13:06:55Z
null
NONE
null
null
null
null
### Describe the bug Encountering an error while loading the ```liuhaotian/LLaVA-Instruct-150K dataset```. ### Steps to reproduce the bug ``` from datasets import load_dataset fw =load_dataset("liuhaotian/LLaVA-Instruct-150K") ``` Error: ``` ArrowInvalid Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py](https://localhost:8080/#) in _generate_tables(self, files) 136 try: --> 137 pa_table = paj.read_json( 138 io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) 20 frames ArrowInvalid: JSON parse error: Column() changed from object to array in row 0 During handling of the above exception, another exception occurred: ArrowTypeError Traceback (most recent call last) ArrowTypeError: ("Expected bytes, got a 'int' object", 'Conversion failed for column id with type object') The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) [/usr/local/lib/python3.10/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) 1895 if isinstance(e, DatasetGenerationError): 1896 raise -> 1897 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1898 1899 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ``` ### Expected behavior I have tried loading the dataset both on my own server and on Colab, and encountered errors in both instances. ### Environment info ``` - `datasets` version: 3.2.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.3 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.9.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7322/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7322/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7321
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7321/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7321/comments
https://api.github.com/repos/huggingface/datasets/issues/7321/events
https://github.com/huggingface/datasets/issues/7321
2,731,626,760
I_kwDODunzps6i0VEI
7,321
ImportError: cannot import name 'set_caching_enabled' from 'datasets'
{ "avatar_url": "https://avatars.githubusercontent.com/u/33318353?v=4", "events_url": "https://api.github.com/users/sankexin/events{/privacy}", "followers_url": "https://api.github.com/users/sankexin/followers", "following_url": "https://api.github.com/users/sankexin/following{/other_user}", "gists_url": "https://api.github.com/users/sankexin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sankexin", "id": 33318353, "login": "sankexin", "node_id": "MDQ6VXNlcjMzMzE4MzUz", "organizations_url": "https://api.github.com/users/sankexin/orgs", "received_events_url": "https://api.github.com/users/sankexin/received_events", "repos_url": "https://api.github.com/users/sankexin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sankexin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sankexin/subscriptions", "type": "User", "url": "https://api.github.com/users/sankexin", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "pip install datasets==2.18.0", "Hi ! I think you need to update axolotl" ]
2024-12-11T01:58:46Z
2024-12-11T13:32:15Z
null
NONE
null
null
null
null
### Describe the bug Traceback (most recent call last): File "/usr/local/lib/python3.10/runpy.py", line 187, in _run_module_as_main mod_name, mod_spec, code = _get_module_details(mod_name, _Error) File "/usr/local/lib/python3.10/runpy.py", line 110, in _get_module_details __import__(pkg_name) File "/home/Medusa/axolotl/src/axolotl/cli/__init__.py", line 23, in <module> from axolotl.train import TrainDatasetMeta File "/home/Medusa/axolotl/src/axolotl/train.py", line 23, in <module> from axolotl.utils.trainer import setup_trainer File "/home/Medusa/axolotl/src/axolotl/utils/trainer.py", line 13, in <module> from datasets import set_caching_enabled ImportError: cannot import name 'set_caching_enabled' from 'datasets' (/usr/local/lib/python3.10/site-packages/datasets/__init__.py) ### Steps to reproduce the bug 1、axolotl 2、accelerate launch -m axolotl.cli.train examples/medusa/qwen_lora_stage1.yml ### Expected behavior enable datasets ### Environment info python3.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7321/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7321/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7320
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7320/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7320/comments
https://api.github.com/repos/huggingface/datasets/issues/7320/events
https://github.com/huggingface/datasets/issues/7320
2,731,112,100
I_kwDODunzps6iyXak
7,320
ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['label']
{ "avatar_url": "https://avatars.githubusercontent.com/u/38381084?v=4", "events_url": "https://api.github.com/users/atrompeterog/events{/privacy}", "followers_url": "https://api.github.com/users/atrompeterog/followers", "following_url": "https://api.github.com/users/atrompeterog/following{/other_user}", "gists_url": "https://api.github.com/users/atrompeterog/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/atrompeterog", "id": 38381084, "login": "atrompeterog", "node_id": "MDQ6VXNlcjM4MzgxMDg0", "organizations_url": "https://api.github.com/users/atrompeterog/orgs", "received_events_url": "https://api.github.com/users/atrompeterog/received_events", "repos_url": "https://api.github.com/users/atrompeterog/repos", "site_admin": false, "starred_url": "https://api.github.com/users/atrompeterog/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/atrompeterog/subscriptions", "type": "User", "url": "https://api.github.com/users/atrompeterog", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Now i have other error" ]
2024-12-10T20:23:11Z
2024-12-10T23:22:23Z
2024-12-10T23:22:23Z
NONE
null
null
null
null
### Describe the bug I am trying to create a PEFT model from DISTILBERT model, and run a training loop. However, the trainer.train() is giving me this error: ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['label'] Here is my code: ### Steps to reproduce the bug #Creating a PEFT Config from peft import LoraConfig from transformers import AutoTokenizer, AutoModelForSequenceClassification from peft import get_peft_model lora_config = LoraConfig( task_type="SEQ_CLASS", r=8, lora_alpha=32, target_modules=["q_lin", "k_lin", "v_lin"], lora_dropout=0.01, ) #Converting a Transformers Model into a PEFT Model model = AutoModelForSequenceClassification.from_pretrained( "distilbert-base-uncased", num_labels=2, #Binary classification, 1 = positive, 0 = negative ) lora_model = get_peft_model(model, lora_config) print(lora_model) Tokenize data set from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") # Load the train and test splits dataset dataset = load_dataset("fancyzhx/amazon_polarity") #create a smaller subset for train and test subset_size = 5000 small_train_dataset = dataset["train"].shuffle(seed=42).select(range(subset_size)) small_test_dataset = dataset["test"].shuffle(seed=42).select(range(subset_size)) #Tokenize data def tokenize_function(example): return tokenizer(example["content"], padding="max_length", truncation=True) tokenized_train_dataset = small_train_dataset.map(tokenize_function, batched=True) tokenized_test_dataset = small_test_dataset.map(tokenize_function, batched=True) train_lora = tokenized_train_dataset.rename_column('label', 'labels') test_lora = tokenized_test_dataset.rename_column('label', 'labels') print(tokenized_train_dataset.column_names) print(tokenized_test_dataset.column_names) #Train the PEFT model import numpy as np from transformers import Trainer, TrainingArguments, default_data_collator, DataCollatorWithPadding from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return {"accuracy": (predictions == labels).mean()} trainer = Trainer( model=lora_model, args=TrainingArguments( output_dir=".", learning_rate=2e-3, # Reduce the batch size if you don't have enough memory per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=3, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, ), train_dataset=tokenized_train_dataset, eval_dataset=tokenized_test_dataset, tokenizer=tokenizer, data_collator=DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="pt"), compute_metrics=compute_metrics, ) trainer.train() ### Expected behavior Example of output: [558/558 01:04, Epoch XX] Epoch | Training Loss | Validation Loss | Accuracy -- | -- | -- | -- 1 | No log | 0.046478 | 0.988341 2 | 0.052800 | 0.048840 | 0.988341 ### Environment info Using python and jupyter notbook
{ "avatar_url": "https://avatars.githubusercontent.com/u/38381084?v=4", "events_url": "https://api.github.com/users/atrompeterog/events{/privacy}", "followers_url": "https://api.github.com/users/atrompeterog/followers", "following_url": "https://api.github.com/users/atrompeterog/following{/other_user}", "gists_url": "https://api.github.com/users/atrompeterog/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/atrompeterog", "id": 38381084, "login": "atrompeterog", "node_id": "MDQ6VXNlcjM4MzgxMDg0", "organizations_url": "https://api.github.com/users/atrompeterog/orgs", "received_events_url": "https://api.github.com/users/atrompeterog/received_events", "repos_url": "https://api.github.com/users/atrompeterog/repos", "site_admin": false, "starred_url": "https://api.github.com/users/atrompeterog/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/atrompeterog/subscriptions", "type": "User", "url": "https://api.github.com/users/atrompeterog", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7320/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7320/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7318
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7318/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7318/comments
https://api.github.com/repos/huggingface/datasets/issues/7318/events
https://github.com/huggingface/datasets/issues/7318
2,730,676,278
I_kwDODunzps6iwtA2
7,318
Introduce support for PDFs
{ "avatar_url": "https://avatars.githubusercontent.com/u/4812761?v=4", "events_url": "https://api.github.com/users/yabramuvdi/events{/privacy}", "followers_url": "https://api.github.com/users/yabramuvdi/followers", "following_url": "https://api.github.com/users/yabramuvdi/following{/other_user}", "gists_url": "https://api.github.com/users/yabramuvdi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yabramuvdi", "id": 4812761, "login": "yabramuvdi", "node_id": "MDQ6VXNlcjQ4MTI3NjE=", "organizations_url": "https://api.github.com/users/yabramuvdi/orgs", "received_events_url": "https://api.github.com/users/yabramuvdi/received_events", "repos_url": "https://api.github.com/users/yabramuvdi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yabramuvdi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yabramuvdi/subscriptions", "type": "User", "url": "https://api.github.com/users/yabramuvdi", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "#self-assign", "Awesome ! Let me know if you have any question or if I can help :)\r\n\r\ncc @AndreaFrancis as well for viz", "Other candidates libraries for the Pdf type: PyMuPDF pypdf and pdfplumber\r\n\r\nEDIT: Pymupdf looks like a good choice when it comes to maturity + performance + versatility BUT the license is maybe an issue, and pypdf, pypdfium2 or pdfplumber are good options imo", "Related to https://github.com/huggingface/datasets/issues/7058", "PyMuPDF is AGPL licensed, so we can't use it. I will move forward with [pdfplumber](https://github.com/jsvine/pdfplumber?tab=readme-ov-file#python-library).", "Hi both! I have made a pull request with a first basic implementation of the Pdf feature. I followed closely what I saw on the Video and Image features. It is my first time contributing so any comments are very welcomed. I think it would be useful to outline together what additional things we can implement (e.g. enabling parsing of the pdf). Thanks :) " ]
2024-12-10T16:59:48Z
2024-12-12T18:38:13Z
null
CONTRIBUTOR
null
null
null
null
### Feature request The idea (discussed in the Discord server with @lhoestq ) is to have a Pdf type like Image/Audio/Video. For example [Video](https://github.com/huggingface/datasets/blob/main/src/datasets/features/video.py) was recently added and contains how to decode a video file encoded in a dictionary like {"path": ..., "bytes": ...} as a VideoReader using decord. We want to do the same with pdf and get a [pypdfium2.PdfDocument](https://pypdfium2.readthedocs.io/en/stable/_modules/pypdfium2/_helpers/document.html#PdfDocument). ### Motivation In many cases PDFs contain very valuable information beyond text (e.g. images, figures). Support for PDFs would help create datasets where all the information is preserved. ### Your contribution I can start the implementation of the Pdf type :)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7318/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7318/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7313
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7313/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7313/comments
https://api.github.com/repos/huggingface/datasets/issues/7313/events
https://github.com/huggingface/datasets/issues/7313
2,726,240,634
I_kwDODunzps6ifyF6
7,313
Cannot create a dataset with relative audio path
{ "avatar_url": "https://avatars.githubusercontent.com/u/5188731?v=4", "events_url": "https://api.github.com/users/sedol1339/events{/privacy}", "followers_url": "https://api.github.com/users/sedol1339/followers", "following_url": "https://api.github.com/users/sedol1339/following{/other_user}", "gists_url": "https://api.github.com/users/sedol1339/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sedol1339", "id": 5188731, "login": "sedol1339", "node_id": "MDQ6VXNlcjUxODg3MzE=", "organizations_url": "https://api.github.com/users/sedol1339/orgs", "received_events_url": "https://api.github.com/users/sedol1339/received_events", "repos_url": "https://api.github.com/users/sedol1339/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sedol1339/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sedol1339/subscriptions", "type": "User", "url": "https://api.github.com/users/sedol1339", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hello ! when you `cast_column` you need the paths to be absolute paths or relative paths to your working directory, not the original dataset directory.\r\n\r\nThough I'd recommend structuring your dataset as an AudioFolder which automatically links a metadata.jsonl or csv to the audio files via relative paths **within** the dataset repository: https://huggingface.co/docs/datasets/v3.2.0/en/audio_load#audiofolder", "@lhoestq thank you, but there are two problems with using AudioFolder:\r\n1. It is said that AudioFolder requires metadata.csv. However, my datset is too large and contains nested and np.ndarray fields, so I can't use csv.\r\n2. It is said that I need to load the dataset with `load_dataset(\"audiofolder\", ...)`. However, if possible, I want my dataset to be loaded as usual with `load_dataset(dataset_name)` after I upload if to HF.", "You can use metadata.jsonl if you have nested data :)\r\n\r\nAnd actually if you have a dataset structured as an AudioFolder then `load_dataset(dataset_name)` does work after uploading to HF", "I have created an audio dataset. In my repo, I have explained the steps and structure. An example dataset is also available in the repo. https://github.com/pr0mila/ParquetToHuggingFace " ]
2024-12-09T07:34:20Z
2025-04-19T07:13:08Z
null
NONE
null
null
null
null
### Describe the bug Hello! I want to create a dataset of parquet files, with audios stored as separate .mp3 files. However, it says "No such file or directory" (see the reproducing code). ### Steps to reproduce the bug Creating a dataset ``` from pathlib import Path from datasets import Dataset, load_dataset, Audio Path('my_dataset/audio').mkdir(parents=True, exist_ok=True) Path('my_dataset/audio/file.mp3').touch(exist_ok=True) Dataset.from_list( [{'audio': {'path': 'audio/file.mp3'}}] ).to_parquet('my_dataset/data.parquet') ``` Result: ``` # my_dataset # ├── audio # │ └── file.mp3 # └── data.parquet ``` Trying to load the dataset ``` dataset = ( load_dataset('my_dataset', split='train') .cast_column('audio', Audio(sampling_rate=16_000)) ) dataset[0] >>> FileNotFoundError: [Errno 2] No such file or directory: 'audio/file.mp3' ``` ### Expected behavior I expect the dataset to load correctly. I've found 2 workarounds, but they are not very good: 1. I can specify an absolute path to the audio, however, when I move the folder or upload to HF it will stop working. 2. I can set `'path': 'file.mp3'`, and load with `load_dataset('my_dataset', data_dir='audio')` - it seems to work, but does this mean that anyone from Hugging Face who wants to use this dataset should also pass the `data_dir` argument, otherwise it won't work? ### Environment info datasets 3.1.0, Ubuntu 24.04.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7313/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7313/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7311
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7311/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7311/comments
https://api.github.com/repos/huggingface/datasets/issues/7311/events
https://github.com/huggingface/datasets/issues/7311
2,725,002,630
I_kwDODunzps6ibD2G
7,311
How to get the original dataset name with username?
{ "avatar_url": "https://avatars.githubusercontent.com/u/11533479?v=4", "events_url": "https://api.github.com/users/npuichigo/events{/privacy}", "followers_url": "https://api.github.com/users/npuichigo/followers", "following_url": "https://api.github.com/users/npuichigo/following{/other_user}", "gists_url": "https://api.github.com/users/npuichigo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/npuichigo", "id": 11533479, "login": "npuichigo", "node_id": "MDQ6VXNlcjExNTMzNDc5", "organizations_url": "https://api.github.com/users/npuichigo/orgs", "received_events_url": "https://api.github.com/users/npuichigo/received_events", "repos_url": "https://api.github.com/users/npuichigo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/npuichigo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/npuichigo/subscriptions", "type": "User", "url": "https://api.github.com/users/npuichigo", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! why not pass the dataset id to Ray and let it check the parquet files ? Or pass the parquet files lists directly ?", "I'm not sure why ray design an API like this to accept a `Dataset` object, so they need to verify the `Dataset` is the original one and use the `DatasetInfo` to query the huggingface hub. I'll advise the ray data team to use dataset id instead of dataset for the `HuggingFaceDatasource` API." ]
2024-12-08T07:18:14Z
2025-01-09T10:48:02Z
null
CONTRIBUTOR
null
null
null
null
### Feature request The issue is related to ray data https://github.com/ray-project/ray/issues/49008 which it requires to check if the dataset is the original one just after `load_dataset` and parquet files are already available on hf hub. The solution used now is to get the dataset name, config and split, then `load_dataset` again and check the fingerprint. But it's unable to get the correct dataset name if it contains username. So how to get the dataset name with username prefix, or is there another way to query if a dataset is the original one with parquet available? @lhoestq ### Motivation https://github.com/ray-project/ray/issues/49008 ### Your contribution Would like to fix that.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7311/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7311/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7310
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7310/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7310/comments
https://api.github.com/repos/huggingface/datasets/issues/7310/events
https://github.com/huggingface/datasets/issues/7310
2,724,830,603
I_kwDODunzps6iaZ2L
7,310
Enable the Audio Feature to decode / read with an offset + duration
{ "avatar_url": "https://avatars.githubusercontent.com/u/11910731?v=4", "events_url": "https://api.github.com/users/TParcollet/events{/privacy}", "followers_url": "https://api.github.com/users/TParcollet/followers", "following_url": "https://api.github.com/users/TParcollet/following{/other_user}", "gists_url": "https://api.github.com/users/TParcollet/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TParcollet", "id": 11910731, "login": "TParcollet", "node_id": "MDQ6VXNlcjExOTEwNzMx", "organizations_url": "https://api.github.com/users/TParcollet/orgs", "received_events_url": "https://api.github.com/users/TParcollet/received_events", "repos_url": "https://api.github.com/users/TParcollet/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TParcollet/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TParcollet/subscriptions", "type": "User", "url": "https://api.github.com/users/TParcollet", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! What about having audio + start + duration columns and enable something like this ?\r\n\r\n```python\r\nfor example in ds:\r\n array = example[\"audio\"].read(start=example[\"start\"], frames=example[\"duration\"])\r\n```", "Hi @lhoestq, this would work with a file-based dataset but would be terrible for a sharded one as it would duplicate the large audio file many times. Also, very long audio files are not embedded very well in the parquet file, even with large_binary(). It crashed a few times for me until I switched to one sample == one file :-( " ]
2024-12-07T22:01:44Z
2024-12-09T21:09:46Z
null
NONE
null
null
null
null
### Feature request For most large speech dataset, we do not wish to generate hundreds of millions of small audio samples. Instead, it is quite common to provide larger audio files with frame offset (soundfile start and stop arguments). We should be able to pass these arguments to Audio() (column ID corresponding in the dataset row). ### Motivation I am currently generating a fairly big dataset to .parquet(). Unfortunately, it does not work because all existing functions load the whole .wav file corresponding to the row. All my attempts at bypassing this failed. We should be able to put in the Table only the bytes corresponding to what soundfile reads with an offset (and subset of the audio file). ### Your contribution I can totally test whatever code on my large dataset creation script.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7310/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7310/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7315
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7315/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7315/comments
https://api.github.com/repos/huggingface/datasets/issues/7315/events
https://github.com/huggingface/datasets/issues/7315
2,729,738,963
I_kwDODunzps6itILT
7,315
Allow manual configuration of Dataset Viewer for datasets not created with the `datasets` library
{ "avatar_url": "https://avatars.githubusercontent.com/u/114512099?v=4", "events_url": "https://api.github.com/users/diarray-hub/events{/privacy}", "followers_url": "https://api.github.com/users/diarray-hub/followers", "following_url": "https://api.github.com/users/diarray-hub/following{/other_user}", "gists_url": "https://api.github.com/users/diarray-hub/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/diarray-hub", "id": 114512099, "login": "diarray-hub", "node_id": "U_kgDOBtNQ4w", "organizations_url": "https://api.github.com/users/diarray-hub/orgs", "received_events_url": "https://api.github.com/users/diarray-hub/received_events", "repos_url": "https://api.github.com/users/diarray-hub/repos", "site_admin": false, "starred_url": "https://api.github.com/users/diarray-hub/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/diarray-hub/subscriptions", "type": "User", "url": "https://api.github.com/users/diarray-hub", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi @diarray-hub , thanks for opening the issue :) Let me ping @lhoestq and @severo from the dataset viewer team :hugs: ", "amazing :)", "Hi ! why not modify the manifest.json file directly ? this way users see in the viewer the dataset as is instead which makes it easier to use using e.g. the `datasets` library", "Can I create and push the dataset with the dataset library while also pushing the dataset directory, mainting its structure and all the files as with git? ", "(I transferred to the issue to the `datasets` repo as it's not related to `huggingface_hub`)", "> Can I create and push the dataset with the dataset library while also pushing the dataset directory, mainting its structure and all the files as with git?\r\n\r\nyes push_to_hub simply uploads Parquet files in a directory named \"data\" in the git repository\r\n", "That's the problem actually, I need that the data stays in the same format and the directory they are in keep the same structure in order to go quick with Nemo training so users of Nvidia's Nemo framework don't need to write any preprocessing code before starting training. That's why I used git instead of push_to_hub so me and other users working with Nemo can just:\r\n1. git clone\r\n2. asr_model.setup_training_data(train_data_config={'manifest_filepath': training_manifest_filepath})\r\n\r\nAnd start training already. It may be not very kind of me to prioritize users of a specific framework but I noticed that it take much more code to convert an huggingFace dataset with the parquet file to Nemo manifest format than the inverse :haha: ", "Happy to help if you think the Nemo dataset format should be supported in `datasets` (and therefore in the HF Viewer that is based on `datasets`). Maybe the Nemo team could help as well\r\n\r\nThough I'm not sure if there is only one but actually many formats/structure in Nemo depending on the task ?", "Yeah, you're right Quentin, it depends of the task. This one is for ASR. And, yes maybe they can help. I noticed that they already share their models through HF. Maybe someone in your teams already have a contact point there. Anyway it's not really a big issues since people can easily understand the dataset and its format with the dataset card but it's a little annoying for those who wanna visually explore each features with the viewer as for regular HF datasets", "In that case I'd recommend you to upload the dataset in Nemo format and \r\n1) add the \"nemo\" tag\r\n2) add how to use the dataset in Nemo in the dataset README.md\r\n\r\nThe viewer is likely to show the audio content by default but without the transcriptions. You can also configure the viewer to show the transcriptions instead (without the audio).", "I already did, it's just a little bit \"dommage\" (Hope you'll understand, you speak french right? Cause I don't know any english word for this) that I have to choose which one the viewer displays. But it's no problem for the usability of the dataset. Thanks Quentin :+1: ", "It's \"dommage\" for now, but feel free to ping the Nemo people if you think there is room for making this better together :)\r\n\r\nKinda related, but the `datasets` AudioFolder structure looks similar and simply asks for a `metadata.jsonl` with a field named \"file_name\" to link the transcriptions to the audio files - you could also add this file to your repository to make the viewer show audio + transcripts.\r\n\r\nAlternatively maybe we can expand the AudioFolder configuration to allow you to set the metadata file to be the \"manifest.json\" and the linking field to be \"audio_file_name\" (we just need to agree on something general - not just for Nemo)", "Right, actually that was my idea when I opened this issues. That's what I suggested, taking my case as an exemple but you should think of a more general approach like adding a field to configure the viewer as you wish in the metadata (in the dataset card) or a config.yaml or json file. With a level of abstraction like the solution I proposed ot even higher abstraction, it would allow for more customizability :)" ]
2024-12-07T16:37:12Z
2024-12-11T11:05:22Z
null
NONE
null
null
null
null
#### **Problem Description** Currently, the Hugging Face Dataset Viewer automatically interprets dataset fields for datasets created with the `datasets` library. However, for datasets pushed directly via `git`, the Viewer: - Defaults to generic columns like `label` with `null` values if no explicit mapping is provided. - Does not allow dataset creators to configure field mappings or suppress default fields unless the dataset is recreated and pushed using the `datasets` library. This creates a limitation for creators who: - Use custom workflows to prepare datasets (e.g., manifest files with audio-transcription mappings). - Push large datasets directly via `git` and cannot easily restructure them to conform to the `datasets` library format. #### **Proposed Solution** Introduce a feature that allows dataset creators to manually configure the Dataset Viewer behavior for datasets not created with the `datasets` library. This could be achieved by: 1. **Using the YAML Metadata in `README.md`:** - Add support for defining the dataset's field mappings directly in the `README.md` YAML section. - Example: ```yaml viewer: fields: - name: "audio" type: "audio_path" / "text" source: "manifest['audio']" - name: "bambara_transcription" type: "text" source: "manifest['bambara']" - name: "french_translation" type: "text" source: "manifest['french']" ``` With manifest being a csv or json like format file in the repository so that the viewer understands that it should look for the values of each field in that file. #### **Benefits** - Improves flexibility for dataset creators who push datasets via `git`. - Enhances dataset discoverability and usability on the Hugging Face Hub by allowing creators to present meaningful field mappings without restructuring their data. - Reduces overhead for creators of large or complex datasets. #### **Examples of Use Case** - An audio dataset with transcriptions in multiple languages stored in a `manifest.json` file, where the user wants the Viewer to: - Display the `audio` column and Explicitly map features that he defined such as `bambara_transcription` and `french_translation` from the manifest.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7315/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7315/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7306
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7306/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7306/comments
https://api.github.com/repos/huggingface/datasets/issues/7306/events
https://github.com/huggingface/datasets/issues/7306
2,719,807,464
I_kwDODunzps6iHPfo
7,306
Creating new dataset from list loses information. (Audio Information Lost - either Datatype or Values).
{ "avatar_url": "https://avatars.githubusercontent.com/u/9797804?v=4", "events_url": "https://api.github.com/users/ai-nikolai/events{/privacy}", "followers_url": "https://api.github.com/users/ai-nikolai/followers", "following_url": "https://api.github.com/users/ai-nikolai/following{/other_user}", "gists_url": "https://api.github.com/users/ai-nikolai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ai-nikolai", "id": 9797804, "login": "ai-nikolai", "node_id": "MDQ6VXNlcjk3OTc4MDQ=", "organizations_url": "https://api.github.com/users/ai-nikolai/orgs", "received_events_url": "https://api.github.com/users/ai-nikolai/received_events", "repos_url": "https://api.github.com/users/ai-nikolai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ai-nikolai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ai-nikolai/subscriptions", "type": "User", "url": "https://api.github.com/users/ai-nikolai", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-12-05T09:07:53Z
2024-12-05T09:09:38Z
null
NONE
null
null
null
null
### Describe the bug When creating a dataset from a list of datapoints, information is lost of the individual items. Specifically, when creating a dataset from a list of datapoints (from another dataset). Either the datatype is lost or the values are lost. See examples below. -> What is the best way to create a dataset from a list of datapoints? --- e.g.: **When running this code:** ```python from datasets import load_dataset, Dataset commonvoice_data = load_dataset("mozilla-foundation/common_voice_17_0", "it", split="test", streaming=True) datapoint = next(iter(commonvoice_data)) out = [datapoint] new_data = Dataset.from_list(out) #this loses datatype information new_data2= Dataset.from_list(out,features=commonvoice_data.features) #this loses value information ``` **We get the following**: --- 1. `datapoint`: (the original datapoint) ``` 'audio': {'path': 'it_test_0/common_voice_it_23606167.mp3', 'array': array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 2.21619011e-05, 2.72628222e-05, 0.00000000e+00]), 'sampling_rate': 48000} ``` Original Dataset Features: ``` >>> commonvoice_data.features 'audio': Audio(sampling_rate=48000, mono=True, decode=True, id=None) ``` - Here we see column "audio", has the proper values (both `path` & and `array`) and has the correct datatype (Audio). ---- 2. new_data[0]: ``` # Cannot be printed (as it prints the entire array). ``` New Dataset 1 Features: ``` >>> new_data.features 'audio': {'array': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None), 'path': Value(dtype='string', id=None), 'sampling_rate': Value(dtype='int64', id=None)} ``` - Here we see that the column "audio", has the correct values, but is not the Audio datatype anymore. --- 3. new_data2[0]: ``` 'audio': {'path': None, 'array': array([0., 0., 0., ..., 0., 0., 0.]), 'sampling_rate': 48000}, ``` New Dataset 2 Features: ``` >>> new_data2.features 'audio': Audio(sampling_rate=48000, mono=True, decode=True, id=None), ``` - Here we see that the column "audio", has the correct datatype, but all the array & path values were lost! ### Steps to reproduce the bug ## Run: ```python from datasets import load_dataset, Dataset commonvoice_data = load_dataset("mozilla-foundation/common_voice_17_0", "it", split="test", streaming=True) datapoint = next(iter(commonvoice_data)) out = [datapoint] new_data = Dataset.from_list(out) #this loses datatype information new_data2= Dataset.from_list(out,features=commonvoice_data.features) #this loses value information ``` ### Expected behavior ## Expected: ```datapoint == new_data[0]``` AND ```datapoint == new_data2[0]``` ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7306/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7306/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7305
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7305/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7305/comments
https://api.github.com/repos/huggingface/datasets/issues/7305/events
https://github.com/huggingface/datasets/issues/7305
2,715,907,267
I_kwDODunzps6h4XTD
7,305
Build Documentation Test Fails Due to "Bad Credentials" Error
{ "avatar_url": "https://avatars.githubusercontent.com/u/31152346?v=4", "events_url": "https://api.github.com/users/ruidazeng/events{/privacy}", "followers_url": "https://api.github.com/users/ruidazeng/followers", "following_url": "https://api.github.com/users/ruidazeng/following{/other_user}", "gists_url": "https://api.github.com/users/ruidazeng/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ruidazeng", "id": 31152346, "login": "ruidazeng", "node_id": "MDQ6VXNlcjMxMTUyMzQ2", "organizations_url": "https://api.github.com/users/ruidazeng/orgs", "received_events_url": "https://api.github.com/users/ruidazeng/received_events", "repos_url": "https://api.github.com/users/ruidazeng/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ruidazeng/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ruidazeng/subscriptions", "type": "User", "url": "https://api.github.com/users/ruidazeng", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "how were you able to fix this please?", "> how were you able to fix this please?\r\n\r\nI was not able to fix this." ]
2024-12-03T20:22:54Z
2025-01-08T22:38:14Z
null
CONTRIBUTOR
null
null
null
null
### Describe the bug The `Build documentation / build / build_main_documentation (push)` job is consistently failing during the "Syncing repository" step. The error occurs when attempting to determine the default branch name, resulting in "Bad credentials" errors. ### Steps to reproduce the bug 1. Trigger the `build_main_documentation` job. 2. Observe the logs during the "Syncing repository" step. ### Expected behavior The workflow should be able to retrieve the default branch name without encountering credential issues. ### Environment info ```plaintext Syncing repository: huggingface/notebooks Getting Git version info Temporarily overriding HOME='/home/runner/work/_temp/00e62748-9940-4a4f-bbbc-eb2cda6d7ed6' before making global git config changes Adding repository directory to the temporary git global config as a safe directory /usr/bin/git config --global --add safe.directory /home/runner/work/datasets/datasets/notebooks Initializing the repository Disabling automatic garbage collection Setting up auth Determining the default branch Retrieving the default branch name Bad credentials - https://docs.github.com/rest Waiting 20 seconds before trying again Retrieving the default branch name Bad credentials - https://docs.github.com/rest Waiting 19 seconds before trying again Retrieving the default branch name Error: Bad credentials - https://docs.github.com/rest ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7305/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7305/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7303
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7303/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7303/comments
https://api.github.com/repos/huggingface/datasets/issues/7303/events
https://github.com/huggingface/datasets/issues/7303
2,705,729,696
I_kwDODunzps6hRiig
7,303
DataFilesNotFoundError for datasets LM1B
{ "avatar_url": "https://avatars.githubusercontent.com/u/72264324?v=4", "events_url": "https://api.github.com/users/hml1996-fight/events{/privacy}", "followers_url": "https://api.github.com/users/hml1996-fight/followers", "following_url": "https://api.github.com/users/hml1996-fight/following{/other_user}", "gists_url": "https://api.github.com/users/hml1996-fight/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hml1996-fight", "id": 72264324, "login": "hml1996-fight", "node_id": "MDQ6VXNlcjcyMjY0MzI0", "organizations_url": "https://api.github.com/users/hml1996-fight/orgs", "received_events_url": "https://api.github.com/users/hml1996-fight/received_events", "repos_url": "https://api.github.com/users/hml1996-fight/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hml1996-fight/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hml1996-fight/subscriptions", "type": "User", "url": "https://api.github.com/users/hml1996-fight", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! Can you try with a more recent version of `datasets` ? Also you might need to pass trust_remote_code=True since it's a script based dataset" ]
2024-11-29T17:27:45Z
2024-12-11T13:22:47Z
2024-12-11T13:22:47Z
NONE
null
null
null
null
### Describe the bug Cannot load the dataset https://huggingface.co/datasets/billion-word-benchmark/lm1b ### Steps to reproduce the bug `dataset = datasets.load_dataset('lm1b', split=split)` ### Expected behavior `Traceback (most recent call last): File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/word_freq.py", line 13, in <module> train_data = DiffusionLoader(tokenizer=tokenizer).my_load(task_name='lm1b', splits=['train'])[0] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 20, in my_load return [self._load(task_name, name) for name in splits] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 20, in <listcomp> return [self._load(task_name, name) for name in splits] File "/home/hml/projects/DeepLearning/Generative_model/Diffusion-BERT/dataloader.py", line 13, in _load dataset = datasets.load_dataset('lm1b', split=split) File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 2594, in load_dataset builder_instance = load_dataset_builder( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 2266, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 1827, in dataset_module_factory ).get_module() File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 1040, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/home/hml/.conda/envs/DB/lib/python3.10/site-packages/datasets/load.py", line 598, in infer_module_for_data_files raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else "")) datasets.exceptions.DataFilesNotFoundError: No (supported) data files found in lm1b` ### Environment info datasets: 2.20.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/72264324?v=4", "events_url": "https://api.github.com/users/hml1996-fight/events{/privacy}", "followers_url": "https://api.github.com/users/hml1996-fight/followers", "following_url": "https://api.github.com/users/hml1996-fight/following{/other_user}", "gists_url": "https://api.github.com/users/hml1996-fight/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hml1996-fight", "id": 72264324, "login": "hml1996-fight", "node_id": "MDQ6VXNlcjcyMjY0MzI0", "organizations_url": "https://api.github.com/users/hml1996-fight/orgs", "received_events_url": "https://api.github.com/users/hml1996-fight/received_events", "repos_url": "https://api.github.com/users/hml1996-fight/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hml1996-fight/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hml1996-fight/subscriptions", "type": "User", "url": "https://api.github.com/users/hml1996-fight", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7303/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7303/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7299
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7299/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7299/comments
https://api.github.com/repos/huggingface/datasets/issues/7299/events
https://github.com/huggingface/datasets/issues/7299
2,695,378,251
I_kwDODunzps6gqDVL
7,299
Efficient Image Augmentation in Hugging Face Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/46443190?v=4", "events_url": "https://api.github.com/users/fabiozappo/events{/privacy}", "followers_url": "https://api.github.com/users/fabiozappo/followers", "following_url": "https://api.github.com/users/fabiozappo/following{/other_user}", "gists_url": "https://api.github.com/users/fabiozappo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fabiozappo", "id": 46443190, "login": "fabiozappo", "node_id": "MDQ6VXNlcjQ2NDQzMTkw", "organizations_url": "https://api.github.com/users/fabiozappo/orgs", "received_events_url": "https://api.github.com/users/fabiozappo/received_events", "repos_url": "https://api.github.com/users/fabiozappo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fabiozappo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fabiozappo/subscriptions", "type": "User", "url": "https://api.github.com/users/fabiozappo", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-11-26T16:50:32Z
2024-11-26T16:53:53Z
null
NONE
null
null
null
null
### Describe the bug I'm using the Hugging Face datasets library to load images in batch and would like to apply a torchvision transform to solve the inconsistent image sizes in the dataset and apply some on the fly image augmentation. I can just think about using the collate_fn, but seems quite inefficient. I'm new to the Hugging Face datasets library, I didn't find nothing in the documentation or the issues here on github. Is there an existing way to add image transformations directly to the dataset loading pipeline? ### Steps to reproduce the bug from datasets import load_dataset from torch.utils.data import DataLoader ```python def collate_fn(batch): images = [item['image'] for item in batch] texts = [item['text'] for item in batch] return { 'images': images, 'texts': texts } dataset = load_dataset("Yuki20/pokemon_caption", split="train") dataloader = DataLoader(dataset, batch_size=4, collate_fn=collate_fn) # Output shows varying image sizes: # [(1280, 1280), (431, 431), (789, 789), (769, 769)] ``` ### Expected behavior I'm looking for a way to resize images on-the-fly when loading the dataset, similar to PyTorch's Dataset.__getitem__ functionality. This would be more efficient than handling resizing in the collate_fn. ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-6.5.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.11.10 - `huggingface_hub` version: 0.26.2 - PyArrow version: 18.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7299/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7299/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7298
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7298/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7298/comments
https://api.github.com/repos/huggingface/datasets/issues/7298/events
https://github.com/huggingface/datasets/issues/7298
2,694,196,968
I_kwDODunzps6gli7o
7,298
loading dataset issue with load_dataset() when training controlnet
{ "avatar_url": "https://avatars.githubusercontent.com/u/81594044?v=4", "events_url": "https://api.github.com/users/sarahahtee/events{/privacy}", "followers_url": "https://api.github.com/users/sarahahtee/followers", "following_url": "https://api.github.com/users/sarahahtee/following{/other_user}", "gists_url": "https://api.github.com/users/sarahahtee/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sarahahtee", "id": 81594044, "login": "sarahahtee", "node_id": "MDQ6VXNlcjgxNTk0MDQ0", "organizations_url": "https://api.github.com/users/sarahahtee/orgs", "received_events_url": "https://api.github.com/users/sarahahtee/received_events", "repos_url": "https://api.github.com/users/sarahahtee/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sarahahtee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sarahahtee/subscriptions", "type": "User", "url": "https://api.github.com/users/sarahahtee", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-11-26T10:50:18Z
2024-11-26T10:50:18Z
null
NONE
null
null
null
null
### Describe the bug i'm unable to load my dataset for [controlnet training](https://github.com/huggingface/diffusers/blob/074e12358bc17e7dbe111ea4f62f05dbae8a49d5/examples/controlnet/train_controlnet.py#L606) using load_dataset(). however, load_from_disk() seems to work? would appreciate if someone can explain why that's the case here 1. for reference here's the structure of the original training files _before_ dataset creation - ``` - dir train - dir A (illustrations) - dir B (SignWriting) - prompt.json containing: {"source": "B/file.png", "target": "A/file.png", "prompt": "..."} ``` 2. here are features _after_ dataset creation - ``` "features": { "control_image": { "_type": "Image" }, "image": { "_type": "Image" }, "caption": { "dtype": "string", "_type": "Value" } ``` 3. I've also attempted to upload the dataset to huggingface with the same error output ### Steps to reproduce the bug 1. [dataset creation script](https://github.com/sign-language-processing/signwriting-illustration/blob/main/signwriting_illustration/controlnet_huggingface/dataset.py) 2. controlnet [training script](examples/controlnet/train_controlnet.py) used 3. training parameters - ! accelerate launch diffusers/examples/controlnet/train_controlnet.py \ --pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-v1-5" \ --output_dir="$OUTPUT_DIR" \ --train_data_dir="$HF_DATASET_DIR" \ --conditioning_image_column=control_image \ --image_column=image \ --caption_column=caption \ --resolution=512\ --learning_rate=1e-5 \ --validation_image "./validation/0a4b3c71265bb3a726457837428dda78.png" "./validation/0a5922fe2c638e6776bd62f623145004.png" "./validation/1c9f1a53106f64c682cf5d009ee7156f.png" \ --validation_prompt "An illustration of a man with short hair" "An illustration of a woman with short hair" "An illustration of Barack Obama" \ --train_batch_size=4 \ --num_train_epochs=500 \ --tracker_project_name="sd-controlnet-signwriting-test" \ --hub_model_id="sarahahtee/signwriting-illustration-test" \ --checkpointing_steps=5000 \ --validation_steps=1000 \ --report_to wandb \ --push_to_hub 4. command - ` sbatch --export=HUGGINGFACE_TOKEN=hf_token,WANDB_API_KEY=api_key script.sh` ### Expected behavior ``` 11/25/2024 17:12:18 - INFO - __main__ - Initializing controlnet weights from unet Generating train split: 1 examples [00:00, 334.85 examples/s] Traceback (most recent call last): File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 1189, in <module> main(args) File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 923, in main train_dataset = make_train_dataset(args, tokenizer, accelerator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/data/user/user/signwriting_illustration/controlnet_huggingface/diffusers/examples/controlnet/train_controlnet.py", line 639, in make_train_dataset raise ValueError( ValueError: `--image_column` value 'image' not found in dataset columns. Dataset columns are: _data_files, _fingerprint, _format_columns, _format_kwargs, _format_type, _output_all_columns, _split ``` ### Environment info accelerate 1.1.1 huggingface-hub 0.26.2 python 3.11 torch 2.5.1 transformers 4.46.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7298/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7298/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7297
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7297/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7297/comments
https://api.github.com/repos/huggingface/datasets/issues/7297/events
https://github.com/huggingface/datasets/issues/7297
2,683,977,430
I_kwDODunzps6f-j7W
7,297
wrong return type for `IterableDataset.shard()`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47225236?v=4", "events_url": "https://api.github.com/users/ysngshn/events{/privacy}", "followers_url": "https://api.github.com/users/ysngshn/followers", "following_url": "https://api.github.com/users/ysngshn/following{/other_user}", "gists_url": "https://api.github.com/users/ysngshn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ysngshn", "id": 47225236, "login": "ysngshn", "node_id": "MDQ6VXNlcjQ3MjI1MjM2", "organizations_url": "https://api.github.com/users/ysngshn/orgs", "received_events_url": "https://api.github.com/users/ysngshn/received_events", "repos_url": "https://api.github.com/users/ysngshn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ysngshn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ysngshn/subscriptions", "type": "User", "url": "https://api.github.com/users/ysngshn", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Oops my bad ! thanks for reporting" ]
2024-11-22T17:25:46Z
2024-12-03T14:27:27Z
2024-12-03T14:27:03Z
NONE
null
null
null
null
### Describe the bug `IterableDataset.shard()` has the wrong typing for its return as `"Dataset"`. It should be `"IterableDataset"`. Makes my IDE unhappy. ### Steps to reproduce the bug look at [the source code](https://github.com/huggingface/datasets/blob/main/src/datasets/iterable_dataset.py#L2668)? ### Expected behavior Correct return type as `"IterableDataset"` ### Environment info datasets==3.1.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7297/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7297/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7295
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7295/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7295/comments
https://api.github.com/repos/huggingface/datasets/issues/7295/events
https://github.com/huggingface/datasets/issues/7295
2,672,003,384
I_kwDODunzps6fQ4k4
7,295
[BUG]: Streaming from S3 triggers `unexpected keyword argument 'requote_redirect_url'`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27340033?v=4", "events_url": "https://api.github.com/users/casper-hansen/events{/privacy}", "followers_url": "https://api.github.com/users/casper-hansen/followers", "following_url": "https://api.github.com/users/casper-hansen/following{/other_user}", "gists_url": "https://api.github.com/users/casper-hansen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/casper-hansen", "id": 27340033, "login": "casper-hansen", "node_id": "MDQ6VXNlcjI3MzQwMDMz", "organizations_url": "https://api.github.com/users/casper-hansen/orgs", "received_events_url": "https://api.github.com/users/casper-hansen/received_events", "repos_url": "https://api.github.com/users/casper-hansen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/casper-hansen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/casper-hansen/subscriptions", "type": "User", "url": "https://api.github.com/users/casper-hansen", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-11-19T12:23:36Z
2024-11-19T13:01:53Z
null
NONE
null
null
null
null
### Describe the bug Note that this bug is only triggered when `streaming=True`. #5459 introduced always calling fsspec with `client_kwargs={"requote_redirect_url": False}`, which seems to have incompatibility issues even in the newest versions. Analysis of what's happening: 1. `datasets` passes the `client_kwargs` through `fsspec` 2. `fsspec` passes the `client_kwargs` through `s3fs` 3. `s3fs` passes the `client_kwargs` to `aiobotocore` which uses `aiohttp` ``` s3creator = self.session.create_client( "s3", config=conf, **init_kwargs, **client_kwargs ) ``` 4. The `session` tries to create an `aiohttp` session but the `**kwargs` are not just kept as unfolded `**kwargs` but passed in as individual variables (`requote_redirect_url` and `trust_env`). Error: ``` Traceback (most recent call last): File "/Users/cxrh/Documents/GitHub/nlp_foundation/nlp_train/test.py", line 14, in <module> batch = next(iter(ds)) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1353, in __iter__ for key, example in ex_iterable: File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 255, in __iter__ for key, pa_table in self.generate_tables_fn(**self.kwargs): File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/packaged_modules/json/json.py", line 78, in _generate_tables for file_idx, file in enumerate(itertools.chain.from_iterable(files)): File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py", line 840, in __iter__ yield from self.generator(*self.args, **self.kwargs) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py", line 921, in _iter_from_urlpaths elif xisdir(urlpath, download_config=download_config): File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py", line 305, in xisdir return fs.isdir(inner_path) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/spec.py", line 721, in isdir return self.info(path)["type"] == "directory" File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/archive.py", line 38, in info self._get_dirs() File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/datasets/filesystems/compression.py", line 64, in _get_dirs f = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name} File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/asyn.py", line 118, in wrapper return sync(self.loop, func, *args, **kwargs) File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/asyn.py", line 103, in sync raise return_result File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/fsspec/asyn.py", line 56, in _runner result[0] = await coro File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/s3fs/core.py", line 1302, in _info out = await self._call_s3( File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/s3fs/core.py", line 341, in _call_s3 await self.set_session() File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/s3fs/core.py", line 524, in set_session s3creator = self.session.create_client( File "/Users/cxrh/miniconda3/envs/s3_data_loader/lib/python3.10/site-packages/aiobotocore/session.py", line 114, in create_client return ClientCreatorContext(self._create_client(*args, **kwargs)) TypeError: AioSession._create_client() got an unexpected keyword argument 'requote_redirect_url' ``` ### Steps to reproduce the bug 1. Install the necessary libraries, datasets having a requirement for being at least 2.19.0: ``` pip install s3fs fsspec aiohttp aiobotocore botocore 'datasets>=2.19.0' ``` 2. Run this code: ``` from datasets import load_dataset ds = load_dataset( "json", data_files="s3://your_path/*.jsonl.gz", streaming=True, split="train", ) batch = next(iter(ds)) print(batch) ``` 3. You get the `unexpected keyword argument 'requote_redirect_url'` error. ### Expected behavior The datasets is able to load a batch from the dataset stored on S3, without triggering this `requote_redirect_url` error. Fix: I could fix this by directly removing the `requote_redirect_url` and `trust_env` - then it loads properly. <img width="1127" alt="image" src="https://github.com/user-attachments/assets/4c40efa9-8787-4919-b613-e4908c3d1ab2"> ### Environment info - `datasets` version: 3.1.0 - Platform: macOS-15.1-arm64-arm-64bit - Python version: 3.10.15 - `huggingface_hub` version: 0.26.2 - PyArrow version: 18.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7295/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7295/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7292
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7292/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7292/comments
https://api.github.com/repos/huggingface/datasets/issues/7292/events
https://github.com/huggingface/datasets/issues/7292
2,664,250,855
I_kwDODunzps6ezT3n
7,292
DataFilesNotFoundError for datasets `OpenMol/PubChemSFT`
{ "avatar_url": "https://avatars.githubusercontent.com/u/17878022?v=4", "events_url": "https://api.github.com/users/xnuohz/events{/privacy}", "followers_url": "https://api.github.com/users/xnuohz/followers", "following_url": "https://api.github.com/users/xnuohz/following{/other_user}", "gists_url": "https://api.github.com/users/xnuohz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xnuohz", "id": 17878022, "login": "xnuohz", "node_id": "MDQ6VXNlcjE3ODc4MDIy", "organizations_url": "https://api.github.com/users/xnuohz/orgs", "received_events_url": "https://api.github.com/users/xnuohz/received_events", "repos_url": "https://api.github.com/users/xnuohz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xnuohz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xnuohz/subscriptions", "type": "User", "url": "https://api.github.com/users/xnuohz", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Hi ! If the dataset owner uses `push_to_hub()` instead of `save_to_disk()` and upload the local files it will fix the issue.\r\nRight now `datasets` sees the train/test/valid pickle files but they are not supported file formats.", "Alternatively you can load the arrow file instead:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\ndataset = load_dataset('OpenMol/PubChemSFT', data_files='stage1/*.arrow')\r\n```", "Thanks! I'll have a try." ]
2024-11-16T11:54:31Z
2024-11-19T00:53:00Z
2024-11-19T00:52:59Z
NONE
null
null
null
null
### Describe the bug Cannot load the dataset https://huggingface.co/datasets/OpenMol/PubChemSFT ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset('OpenMol/PubChemSFT') ``` ### Expected behavior ``` --------------------------------------------------------------------------- DataFilesNotFoundError Traceback (most recent call last) Cell In[7], [line 2](vscode-notebook-cell:?execution_count=7&line=2) [1](vscode-notebook-cell:?execution_count=7&line=1) from datasets import load_dataset ----> [2](vscode-notebook-cell:?execution_count=7&line=2) dataset = load_dataset('OpenMol/PubChemSFT') File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2587, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) [2582](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2582) verification_mode = VerificationMode( [2583](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2583) (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS [2584](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2584) ) [2586](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2586) # Create a dataset builder -> [2587](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2587) builder_instance = load_dataset_builder( [2588](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2588) path=path, [2589](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2589) name=name, [2590](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2590) data_dir=data_dir, [2591](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2591) data_files=data_files, [2592](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2592) cache_dir=cache_dir, [2593](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2593) features=features, [2594](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2594) download_config=download_config, [2595](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2595) download_mode=download_mode, [2596](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2596) revision=revision, [2597](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2597) token=token, [2598](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2598) storage_options=storage_options, [2599](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2599) trust_remote_code=trust_remote_code, [2600](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2600) _require_default_config_name=name is None, [2601](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2601) **config_kwargs, [2602](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2602) ) [2604](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2604) # Return iterable dataset in case of streaming [2605](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2605) if streaming: File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2259, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) [2257](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2257) download_config = download_config.copy() if download_config else DownloadConfig() [2258](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2258) download_config.storage_options.update(storage_options) -> [2259](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2259) dataset_module = dataset_module_factory( [2260](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2260) path, [2261](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2261) revision=revision, [2262](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2262) download_config=download_config, [2263](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2263) download_mode=download_mode, [2264](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2264) data_dir=data_dir, [2265](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2265) data_files=data_files, [2266](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2266) cache_dir=cache_dir, [2267](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2267) trust_remote_code=trust_remote_code, [2268](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2268) _require_default_config_name=_require_default_config_name, [2269](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2269) _require_custom_configs=bool(config_kwargs), [2270](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2270) ) [2271](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2271) # Get dataset builder class from the processing script [2272](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:2272) builder_kwargs = dataset_module.builder_kwargs File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1904, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) [1902](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1902) raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None [1903](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1903) if isinstance(e1, (DataFilesNotFoundError, DatasetNotFoundError, EmptyDatasetError)): -> [1904](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1904) raise e1 from None [1905](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1905) if isinstance(e1, FileNotFoundError): [1906](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1906) raise FileNotFoundError( [1907](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1907) f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " [1908](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1908) f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" [1909](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1909) ) from None File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1885, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) [1876](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1876) return HubDatasetModuleFactoryWithScript( [1877](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1877) path, [1878](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1878) revision=revision, (...) [1882](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1882) trust_remote_code=trust_remote_code, [1883](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1883) ).get_module() [1884](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1884) else: -> [1885](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1885) return HubDatasetModuleFactoryWithoutScript( [1886](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1886) path, [1887](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1887) revision=revision, [1888](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1888) data_dir=data_dir, [1889](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1889) data_files=data_files, [1890](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1890) download_config=download_config, [1891](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1891) download_mode=download_mode, [1892](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1892) ).get_module() [1893](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1893) except Exception as e1: [1894](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1894) # All the attempts failed, before raising the error we should check if the module is already cached [1895](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1895) try: File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1270, in HubDatasetModuleFactoryWithoutScript.get_module(self) [1263](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1263) patterns = get_data_patterns(base_path, download_config=self.download_config) [1264](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1264) data_files = DataFilesDict.from_patterns( [1265](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1265) patterns, [1266](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1266) base_path=base_path, [1267](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1267) allowed_extensions=ALL_ALLOWED_EXTENSIONS, [1268](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1268) download_config=self.download_config, [1269](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1269) ) -> [1270](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1270) module_name, default_builder_kwargs = infer_module_for_data_files( [1271](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1271) data_files=data_files, [1272](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1272) path=self.name, [1273](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1273) download_config=self.download_config, [1274](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1274) ) [1275](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1275) data_files = data_files.filter_extensions(_MODULE_TO_EXTENSIONS[module_name]) [1276](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:1276) # Collect metadata files if the module supports them File ~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:597, in infer_module_for_data_files(data_files, path, download_config) [595](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:595) raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}") [596](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:596) if not module_name: --> [597](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:597) raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else "")) [598](https://file+.vscode-resource.vscode-cdn.net/home/ubuntu/Projects/notebook/~/Softwares/anaconda3/envs/pyg-dev/lib/python3.9/site-packages/datasets/load.py:598) return module_name, default_builder_kwargs DataFilesNotFoundError: No (supported) data files found in OpenMol/PubChemSFT ``` ### Environment info ``` - `datasets` version: 3.1.0 - Platform: Linux-5.15.0-125-generic-x86_64-with-glibc2.31 - Python version: 3.9.18 - `huggingface_hub` version: 0.25.2 - PyArrow version: 18.0.0 - Pandas version: 2.0.3 - `fsspec` version: 2023.9.2 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/17878022?v=4", "events_url": "https://api.github.com/users/xnuohz/events{/privacy}", "followers_url": "https://api.github.com/users/xnuohz/followers", "following_url": "https://api.github.com/users/xnuohz/following{/other_user}", "gists_url": "https://api.github.com/users/xnuohz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/xnuohz", "id": 17878022, "login": "xnuohz", "node_id": "MDQ6VXNlcjE3ODc4MDIy", "organizations_url": "https://api.github.com/users/xnuohz/orgs", "received_events_url": "https://api.github.com/users/xnuohz/received_events", "repos_url": "https://api.github.com/users/xnuohz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/xnuohz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xnuohz/subscriptions", "type": "User", "url": "https://api.github.com/users/xnuohz", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7292/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7292/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7291
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7291/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7291/comments
https://api.github.com/repos/huggingface/datasets/issues/7291/events
https://github.com/huggingface/datasets/issues/7291
2,662,244,643
I_kwDODunzps6erqEj
7,291
Why return_tensors='pt' doesn't work?
{ "avatar_url": "https://avatars.githubusercontent.com/u/86752851?v=4", "events_url": "https://api.github.com/users/bw-wang19/events{/privacy}", "followers_url": "https://api.github.com/users/bw-wang19/followers", "following_url": "https://api.github.com/users/bw-wang19/following{/other_user}", "gists_url": "https://api.github.com/users/bw-wang19/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bw-wang19", "id": 86752851, "login": "bw-wang19", "node_id": "MDQ6VXNlcjg2NzUyODUx", "organizations_url": "https://api.github.com/users/bw-wang19/orgs", "received_events_url": "https://api.github.com/users/bw-wang19/received_events", "repos_url": "https://api.github.com/users/bw-wang19/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bw-wang19/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bw-wang19/subscriptions", "type": "User", "url": "https://api.github.com/users/bw-wang19", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! `datasets` uses Arrow as storage backend which is agnostic to deep learning frameworks like torch. If you want to get torch tensors back, you need to do `dataset = dataset.with_format(\"torch\")`", "> Hi ! `datasets` uses Arrow as storage backend which is agnostic to deep learning frameworks like torch. If you want to get torch tensors back, you need to do `dataset = dataset.with_format(\"torch\")`\r\n\r\nIt does work! Thanks for your suggestion!" ]
2024-11-15T15:01:23Z
2024-11-18T13:47:08Z
null
NONE
null
null
null
null
### Describe the bug I tried to add input_ids to dataset with map(), and I used the return_tensors='pt', but why I got the callback with the type of List? ![image](https://github.com/user-attachments/assets/ab046e20-2174-4e91-9cd6-4a296a43e83c) ### Steps to reproduce the bug ![image](https://github.com/user-attachments/assets/5d504d4c-22c7-4742-99a1-9cab78739b17) ### Expected behavior Sorry for this silly question, I'm noob on using this tool. But I think it should return a tensor value as I have used the protocol? When I tokenize only one sentence using tokenized_input=tokenizer(input, return_tensors='pt' ),it does return in tensor type. Why doesn't it work in map()? ### Environment info transformers>=4.41.2,<=4.45.0 datasets>=2.16.0,<=2.21.0 accelerate>=0.30.1,<=0.34.2 peft>=0.11.1,<=0.12.0 trl>=0.8.6,<=0.9.6 gradio>=4.0.0 pandas>=2.0.0 scipy einops sentencepiece tiktoken protobuf uvicorn pydantic fastapi sse-starlette matplotlib>=3.7.0 fire packaging pyyaml numpy<2.0.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7291/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7291/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7290
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7290/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7290/comments
https://api.github.com/repos/huggingface/datasets/issues/7290/events
https://github.com/huggingface/datasets/issues/7290
2,657,620,816
I_kwDODunzps6eaBNQ
7,290
`Dataset.save_to_disk` hangs when using num_proc > 1
{ "avatar_url": "https://avatars.githubusercontent.com/u/22243463?v=4", "events_url": "https://api.github.com/users/JohannesAck/events{/privacy}", "followers_url": "https://api.github.com/users/JohannesAck/followers", "following_url": "https://api.github.com/users/JohannesAck/following{/other_user}", "gists_url": "https://api.github.com/users/JohannesAck/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JohannesAck", "id": 22243463, "login": "JohannesAck", "node_id": "MDQ6VXNlcjIyMjQzNDYz", "organizations_url": "https://api.github.com/users/JohannesAck/orgs", "received_events_url": "https://api.github.com/users/JohannesAck/received_events", "repos_url": "https://api.github.com/users/JohannesAck/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JohannesAck/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JohannesAck/subscriptions", "type": "User", "url": "https://api.github.com/users/JohannesAck", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I've met the same situations.\r\n\r\nHere's my logs:\r\nnum_proc = 64, I stop it early as it cost **too** much time.\r\n```\r\nSaving the dataset (1540/4775 shards): 32%|███▏ | 47752224/147853764 [15:32:54<132:28:34, 209.89 examples/s]\r\nSaving the dataset (1540/4775 shards): 32%|███▏ | 47754224/147853764 [15:32:54<78:14:37, 355.37 examples/s] \r\nSaving the dataset (1540/4775 shards): 32%|███▏ | 47755224/147853764 [15:32:59<93:43:45, 296.65 examples/s]\r\n```\r\n\r\nnum_proc = 1(Not set num_proc parameter)\r\n```\r\nSaving the dataset (1753/4775 shards): 37%|███▋ | 54301556/147853764 [24:46<38:33, 40440.93 examples/s]\r\nSaving the dataset (1753/4775 shards): 37%|███▋ | 54306556/147853764 [24:46<39:34, 39392.01 examples/s]\r\nSaving the dataset (1753/4775 shards): 37%|███▋ | 54311520/147853764 [24:46<38:56, 40030.53 examples/s]\r\n```\r\n\r\nI check the conditions of CPUs and Memory I/O, I found that disk I/O was blocked, but CPU and memory usage was high. There should be some bugs in the code.\r\n\r\n", "Any new process on this issue? I'm encountering the same issue.", "Not getting this issue. \n\nMy output;\n\n`Saving the dataset (0/87 shards): 7%|▎ | 588000/8557560 [01:29<21:02, 6314.04 examples/s]`\n\nAt setting `num_proc=64`, and \n\n`Saving the dataset (0/87 shards): 0%| | 28000/8557560 [03:20<16:59:06, 139.49 examples/s]` \n\nAt num_proc=1 (pass nothing)\n\nMy `pyproject.toml`; \n\n```\n[project]\nname = \"test\"\nversion = \"0.1.0\"\nrequires-python = \"==3.13.0\"\ndependencies = [\n \"absl-py==2.1.0\",\n \"accelerate==1.7.0\",\n \"aiohappyeyeballs==2.6.1\",\n \"aiohttp==3.12.11\",\n \"aiosignal==1.3.2\",\n \"annotated-types==0.7.0\",\n \"appdirs==1.4.4\",\n \"argcomplete>=1.8.1\",\n \"astunparse==1.6.3\",\n \"async-timeout==5.0.1\",\n \"attrs==21.2.0\",\n \"automat==20.2.0\",\n \"babel==2.8.0\",\n \"backcall==0.2.0\",\n \"bcrypt==3.2.0\",\n \"beautifulsoup4==4.10.0\",\n \"beniget==0.4.2\",\n \"bleach==4.1.0\",\n \"blinker==1.4\",\n \"blis==1.3.0\",\n \"bottle==0.12.19\",\n \"brotli==1.0.9\",\n \"catalogue==2.0.10\",\n \"certifi==2020.6.20\",\n \"cffi==1.15.0\",\n \"chardet==4.0.0\",\n \"charset-normalizer==3.4.2\",\n \"click==8.0.3\",\n \"cloudpathlib==0.21.1\",\n \"colorama>=0.4.4\",\n \"commonmark==0.9.1\",\n \"confection==0.1.5\",\n \"configobj==5.0.6\",\n \"constantly==15.1.0\",\n \"cryptography==3.4.8\",\n \"ctop==1.0.0\",\n \"cycler==0.11.0\",\n \"cymem==2.0.11\",\n \"datasets==3.6.0\",\n \"dbus-python==1.2.18\",\n \"decorator==4.4.2\",\n \"defusedxml==0.7.1\",\n \"dill==0.3.8\",\n \"distlib==0.3.4\",\n \"distro==1.7.0\",\n \"einops==0.8.1\",\n \"en-core-web-sm\",\n \"entrypoints==0.4\",\n \"evaluate==0.4.3\",\n \"filelock==3.6.0\",\n \"flake8==4.0.1\",\n \"flatbuffers==25.2.10\",\n \"fonttools==4.29.1\",\n \"frozenlist==1.7.0\",\n \"fs==2.4.12\",\n \"fsspec==2024.3.1\",\n \"future==0.18.2\",\n \"gast==0.6.0\",\n \"gitdb==4.0.12\",\n \"gitpython==3.1.44\",\n \"glances==3.2.4.2\",\n \"google-pasta==0.2.0\",\n \"grpcio==1.73.0\",\n \"h5py==3.14.0\",\n \"hf-xet==1.1.3\",\n \"html5lib==1.1\",\n \"httplib2==0.20.2\",\n \"huggingface-hub==0.32.4\",\n \"hyperlink==21.0.0\",\n \"icdiff==2.0.4\",\n \"idna==3.3\",\n \"importlib-metadata==4.6.4\",\n \"incremental==21.3.0\",\n \"influxdb==5.3.1\",\n \"ipykernel==6.7.0\",\n \"ipython==7.31.1\",\n \"ipython-genutils==0.2.0\",\n \"jax>=0.5.1\",\n \"jax-cuda12-pjrt>=0.5.1\",\n \"jax-cuda12-plugin>=0.5.1\",\n \"jaxlib>=0.5.1\",\n \"jedi==0.18.0\",\n \"jeepney==0.7.1\",\n \"jinja2==3.0.3\",\n \"joblib>=0.17.0\",\n \"jsonpatch==1.32\",\n \"jsonpointer==2.0\",\n \"jsonschema==3.2.0\",\n \"jupyter-client==7.1.2\",\n \"jupyter-core==4.9.1\",\n \"kaptan>=0.5.12\",\n \"keras==3.6.0\",\n \"keyring==23.5.0\",\n \"kiwisolver==1.3.2\",\n \"langcodes==3.5.0\",\n \"language-data==1.3.0\",\n \"launchpadlib==1.10.16\",\n \"lazr-restfulclient==0.14.4\",\n \"lazr-uri==1.0.6\",\n \"libclang==18.1.1\",\n \"libtmux==0.10.1\",\n \"livereload==2.6.3\",\n \"lxml==6.0.0\",\n \"lz4==3.1.3\",\n \"marisa-trie==1.2.1\",\n \"markdown==3.3.6\",\n \"markupsafe==2.0.1\",\n \"matplotlib==3.5.1\",\n \"matplotlib-inline==0.1.3\",\n \"mccabe==0.6.1\",\n \"mkdocs==1.1.2\",\n \"ml-dtypes==0.5.1\",\n \"more-itertools==8.10.0\",\n \"mpmath>=0.0.0\",\n \"msgpack==1.0.3\",\n \"multidict==6.4.4\",\n \"multiprocess==0.70.16\",\n \"murmurhash==1.0.13\",\n \"namex==0.0.8\",\n \"nest-asyncio==1.5.4\",\n \"netifaces==0.11.0\",\n \"networkx==2.4\",\n \"nltk==3.9.1\",\n \"numpy>=1.23.3\",\n \"nvidia-ml-py==12.555.43\",\n \"oauthlib==3.2.0\",\n \"olefile==0.46\",\n \"opt-einsum==3.3.0\",\n \"optree==0.13.1\",\n \"packaging==21.3\",\n \"pandas==2.3.0\",\n \"parso==0.8.1\",\n \"pexpect==4.8.0\",\n \"pickleshare==0.7.5\",\n \"pillow>=9.0.1\",\n \"pipx==1.0.0\",\n \"platformdirs==2.5.1\",\n \"ply==3.11\",\n \"portalocker==3.1.1\",\n \"preshed==3.0.10\",\n \"prompt-toolkit==3.0.28\",\n \"propcache==0.3.2\",\n \"protobuf==4.21.12\",\n \"psutil==5.9.0\",\n \"ptyprocess==0.7.0\",\n \"py==1.10.0\",\n \"pyarrow==20.0.0\",\n \"pyasn1==0.4.8\",\n \"pyasn1-modules==0.2.1\",\n \"pycodestyle==2.8.0\",\n \"pycparser==2.21\",\n \"pycryptodomex==3.11.0\",\n \"pydantic==2.11.5\",\n \"pydantic-core==2.33.2\",\n \"pyflakes==2.4.0\",\n \"pygments==2.11.2\",\n \"pyhamcrest==2.0.2\",\n \"pyinotify==0.9.6\",\n \"pyjwt==2.3.0\",\n \"pyopenssl==21.0.0\",\n \"pyparsing==2.4.7\",\n \"pyrsistent==0.18.1\",\n \"pyserial==3.5\",\n \"pysmi==0.3.2\",\n \"pysnmp==4.4.12\",\n \"pystache==0.6.0\",\n \"python-dateutil>=2.8.1\",\n \"python-magic==0.4.24\",\n \"pythran>=0.10.0\",\n \"pytz==2022.1\",\n \"pyyaml==6.0.2\",\n \"regex==2024.11.6\",\n \"requests==2.32.4\",\n \"rich==11.2.0\",\n \"rouge-score==0.1.2\",\n \"sacrebleu==2.5.1\",\n \"safetensors==0.5.3\",\n \"scikit-learn==1.7.0\",\n \"scipy>=1.8.0\",\n \"secretstorage==3.3.1\",\n \"sentence-transformers==4.1.0\",\n \"sentry-sdk==2.29.1\",\n \"service-identity==18.1.0\",\n \"setproctitle==1.3.6\",\n \"shellingham==1.5.4\",\n \"six==1.16.0\",\n \"smart-open==7.1.0\",\n \"smmap==5.0.2\",\n \"soupsieve==2.3.1\",\n \"spacy==3.8.7\",\n \"spacy-legacy==3.0.12\",\n \"spacy-loggers==1.0.5\",\n \"srsly==2.5.1\",\n \"ssh-import-id==5.11\",\n \"sympy>=1.12\",\n \"tabulate==0.9.0\",\n \"tensorboard==2.19.0\",\n \"tensorboard-data-server==0.7.2\",\n \"termcolor==1.1.0\",\n \"thinc==8.3.6\",\n \"threadpoolctl==3.1.0\",\n \"tmuxp==1.9.2\",\n \"tokenizers==0.21.1\",\n \"torch==2.6.0\",\n \"torchvision==0.21.0\",\n \"tornado==6.1\",\n \"tqdm==4.67.1\",\n \"traitlets==5.1.1\",\n \"transformers==4.52.4\",\n \"triton==3.2.0\",\n \"twisted==22.1.0\",\n \"typer==0.16.0\",\n \"typing-extensions==4.14.0\",\n \"typing-inspection==0.4.1\",\n \"ufolib2==0.13.1\",\n \"urllib3==2.4.0\",\n \"userpath==1.8.0\",\n \"virtualenv==20.13.0\",\n \"wadllib==1.3.6\",\n \"wandb==0.20.1\",\n \"wasabi==1.1.3\",\n \"wcwidth==0.2.5\",\n \"weasel==0.4.1\",\n \"webencodings==0.5.1\",\n \"websocket-client==1.2.3\",\n \"werkzeug==2.0.2\",\n \"xxhash==3.5.0\",\n \"yarl==1.20.1\",\n \"zipp==1.0.0\",\n \"zope-interface==5.4.0\",\n]\n\n[tool.uv.sources]\nen-core-web-sm = { url = \"https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl\" }\n```" ]
2024-11-14T05:25:13Z
2025-06-27T00:56:47Z
null
NONE
null
null
null
null
### Describe the bug Hi, I'm encountered a small issue when saving datasets that led to the saving taking up to multiple hours. Specifically, [`Dataset.save_to_disk`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.save_to_disk) is a lot slower when using `num_proc>1` than when using `num_proc=1` The documentation mentions that "Multiprocessing is disabled by default.", but there is no explanation on how to enable it. ### Steps to reproduce the bug ``` import numpy as np from datasets import Dataset n_samples = int(4e6) n_tokens_sample = 100 data_dict = { 'tokens' : np.random.randint(0, 100, (n_samples, n_tokens_sample)), } dataset = Dataset.from_dict(data_dict) dataset.save_to_disk('test_dataset', num_proc=1) dataset.save_to_disk('test_dataset', num_proc=4) dataset.save_to_disk('test_dataset', num_proc=8) ``` This results in: ``` >>> dataset.save_to_disk('test_dataset', num_proc=1) Saving the dataset (7/7 shards): 100%|██████████████| 4000000/4000000 [00:17<00:00, 228075.15 examples/s] >>> dataset.save_to_disk('test_dataset', num_proc=4) Saving the dataset (7/7 shards): 100%|██████████████| 4000000/4000000 [01:49<00:00, 36583.75 examples/s] >>> dataset.save_to_disk('test_dataset', num_proc=8) Saving the dataset (8/8 shards): 100%|██████████████| 4000000/4000000 [02:11<00:00, 30518.43 examples/s] ``` With larger datasets it can take hours, but I didn't benchmark that for this bug report. ### Expected behavior I would expect using `num_proc>1` to be faster instead of slower than `num_proc=1`. ### Environment info - `datasets` version: 3.1.0 - Platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.26.2 - PyArrow version: 18.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7290/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7290/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7289
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7289/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7289/comments
https://api.github.com/repos/huggingface/datasets/issues/7289/events
https://github.com/huggingface/datasets/issues/7289
2,648,019,507
I_kwDODunzps6d1ZIz
7,289
Dataset viewer displays wrong statists
{ "avatar_url": "https://avatars.githubusercontent.com/u/3585459?v=4", "events_url": "https://api.github.com/users/speedcell4/events{/privacy}", "followers_url": "https://api.github.com/users/speedcell4/followers", "following_url": "https://api.github.com/users/speedcell4/following{/other_user}", "gists_url": "https://api.github.com/users/speedcell4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/speedcell4", "id": 3585459, "login": "speedcell4", "node_id": "MDQ6VXNlcjM1ODU0NTk=", "organizations_url": "https://api.github.com/users/speedcell4/orgs", "received_events_url": "https://api.github.com/users/speedcell4/received_events", "repos_url": "https://api.github.com/users/speedcell4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/speedcell4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/speedcell4/subscriptions", "type": "User", "url": "https://api.github.com/users/speedcell4", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "i think this issue is more for https://github.com/huggingface/dataset-viewer" ]
2024-11-11T03:29:27Z
2024-11-13T13:02:25Z
2024-11-13T13:02:25Z
NONE
null
null
null
null
### Describe the bug In [my dataset](https://huggingface.co/datasets/speedcell4/opus-unigram2), there is a column called `lang2`, and there are 94 different classes in total, but the viewer says there are 83 values only. This issue only arises in the `train` split. The total number of values is also 94 in the `test` and `dev` columns, viewer tells the correct number of them. <img width="177" alt="image" src="https://github.com/user-attachments/assets/78d76ef2-fe0e-4fa3-85e0-fb2552813d1c"> ### Steps to reproduce the bug ```python3 from datasets import load_dataset ds = load_dataset('speedcell4/opus-unigram2').unique('lang2') for key, lang2 in ds.items(): print(key, len(lang2)) ``` This script returns the following and tells that the `train` split has 94 values in the `lang2` column. ``` train 94 dev 94 test 94 zero 5 ``` ### Expected behavior 94 in the reviewer. ### Environment info Collecting environment information... PyTorch version: 2.4.1+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: CentOS Linux release 8.2.2004 (Core) (x86_64) GCC version: (GCC) 8.3.1 20191121 (Red Hat 8.3.1-5) Clang version: Could not collect CMake version: version 3.11.4 Libc version: glibc-2.28 Python version: 3.9.20 (main, Oct 3 2024, 07:27:41) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-193.28.1.el8_2.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB GPU 1: NVIDIA A100-SXM4-40GB GPU 2: NVIDIA A100-SXM4-40GB GPU 3: NVIDIA A100-SXM4-40GB GPU 4: NVIDIA A100-SXM4-40GB GPU 5: NVIDIA A100-SXM4-40GB GPU 6: NVIDIA A100-SXM4-40GB GPU 7: NVIDIA A100-SXM4-40GB Nvidia driver version: 525.85.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s) per core: 1 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7542 32-Core Processor Stepping: 0 CPU MHz: 3389.114 BogoMIPS: 5789.40 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 16384K NUMA node0 CPU(s): 0-15 NUMA node1 CPU(s): 16-31 NUMA node2 CPU(s): 32-47 NUMA node3 CPU(s): 48-63 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] torch==2.4.1+cu121 [pip3] torchaudio==2.4.1+cu121 [pip3] torchdevice==0.1.1 [pip3] torchglyph==0.3.2 [pip3] torchmetrics==1.5.0 [pip3] torchrua==0.5.1 [pip3] torchvision==0.19.1+cu121 [pip3] triton==3.0.0 [pip3] datasets==3.0.1 [conda] numpy 1.26.4 pypi_0 pypi [conda] torch 2.4.1+cu121 pypi_0 pypi [conda] torchaudio 2.4.1+cu121 pypi_0 pypi [conda] torchdevice 0.1.1 pypi_0 pypi [conda] torchglyph 0.3.2 pypi_0 pypi [conda] torchmetrics 1.5.0 pypi_0 pypi [conda] torchrua 0.5.1 pypi_0 pypi [conda] torchvision 0.19.1+cu121 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi
{ "avatar_url": "https://avatars.githubusercontent.com/u/3585459?v=4", "events_url": "https://api.github.com/users/speedcell4/events{/privacy}", "followers_url": "https://api.github.com/users/speedcell4/followers", "following_url": "https://api.github.com/users/speedcell4/following{/other_user}", "gists_url": "https://api.github.com/users/speedcell4/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/speedcell4", "id": 3585459, "login": "speedcell4", "node_id": "MDQ6VXNlcjM1ODU0NTk=", "organizations_url": "https://api.github.com/users/speedcell4/orgs", "received_events_url": "https://api.github.com/users/speedcell4/received_events", "repos_url": "https://api.github.com/users/speedcell4/repos", "site_admin": false, "starred_url": "https://api.github.com/users/speedcell4/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/speedcell4/subscriptions", "type": "User", "url": "https://api.github.com/users/speedcell4", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7289/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7289/timeline
null
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7287
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7287/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7287/comments
https://api.github.com/repos/huggingface/datasets/issues/7287/events
https://github.com/huggingface/datasets/issues/7287
2,646,958,393
I_kwDODunzps6dxWE5
7,287
Support for identifier-based automated split construction
{ "avatar_url": "https://avatars.githubusercontent.com/u/5719745?v=4", "events_url": "https://api.github.com/users/alex-hh/events{/privacy}", "followers_url": "https://api.github.com/users/alex-hh/followers", "following_url": "https://api.github.com/users/alex-hh/following{/other_user}", "gists_url": "https://api.github.com/users/alex-hh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alex-hh", "id": 5719745, "login": "alex-hh", "node_id": "MDQ6VXNlcjU3MTk3NDU=", "organizations_url": "https://api.github.com/users/alex-hh/orgs", "received_events_url": "https://api.github.com/users/alex-hh/received_events", "repos_url": "https://api.github.com/users/alex-hh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alex-hh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alex-hh/subscriptions", "type": "User", "url": "https://api.github.com/users/alex-hh", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! You can already configure the README.md to have multiple sets of splits, e.g.\r\n\r\n```yaml\r\nconfigs:\r\n- config_name: my_first_set_of_split\r\n data_files:\r\n - split: train\r\n path: *.csv\r\n- config_name: my_second_set_of_split\r\n data_files:\r\n - split: train\r\n path: train-*.csv\r\n - split: test\r\n path: test-*.csv\r\n```", "Hi - I had something slightly different in mind:\r\n\r\nCurrently the yaml splits specified like this only allow specifying which filenames to pass to each split.\r\nBut what if I have a situation where I know which individual *training examples* I want to put in each split.\r\n\r\nI could build split-specific files, however for large datasets with overlapping (e.g. multiple sets of) splits this could result in significant duplication of data.\r\n\r\nI can see that this could actually be very much intended (i.e. to discourage overlapping splits), but wondered whether some support for handling splits based on individual identifiers is something that could be considered. ", "This is not supported right now :/ Though you can load the data in two steps like this\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nfull_dataset = load_dataset(\"username/dataset\", split=\"train\")\r\nmy_first_set_indices = load_dataset(\"username/dataset\", \"my_first_set_of_split\", split=\"train\")\r\n\r\nmy_first_set = full_dataset.select(my_first_set_indices[\"indices\"])\r\n```\r\n\r\nyou can create such a dataset by adapting this code for example\r\n```python\r\n# upload the full dataset\r\nfull_dataset.push_to_hub(\"username/dataset\")\r\n# then upload the indices for each set\r\nDatasetDict({\r\n \"train\": Dataset.from_dict({\"indices\": [0, 1, 2, 3]}),\r\n \"test\": Dataset.from_dict({\"indices\": [4, 5]}),\r\n}).push_to_hub(\"username/dataset\", \"my_first_set_of_split\")" ]
2024-11-10T07:45:19Z
2024-11-19T14:37:02Z
null
CONTRIBUTOR
null
null
null
null
### Feature request As far as I understand, automated construction of splits for hub datasets is currently based on either file names or directory structure ([as described here](https://huggingface.co/docs/datasets/en/repository_structure)) It would seem to be pretty useful to also allow splits to be based on identifiers of individual examples This could be configured like {"split_name": {"column_name": [column values in split]}} (This in turn requires unique 'index' columns, which could be explicitly supported or just assumed to be defined appropriately by the user). I guess a potential downside would be that shards would end up spanning different splits - is this something that can be handled somehow? Would this only affect streaming from hub? ### Motivation The main motivation would be that all data files could be stored in a single directory, and multiple sets of splits could be generated from the same data. This is often useful for large datasets with multiple distinct sets of splits. This could all be configured via the README.md yaml configs ### Your contribution May be able to contribute if it seems like a good idea
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7287/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7287/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7286
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7286/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7286/comments
https://api.github.com/repos/huggingface/datasets/issues/7286/events
https://github.com/huggingface/datasets/issues/7286
2,645,350,151
I_kwDODunzps6drNcH
7,286
Concurrent loading in `load_from_disk` - `num_proc` as a param
{ "avatar_url": "https://avatars.githubusercontent.com/u/5240449?v=4", "events_url": "https://api.github.com/users/unography/events{/privacy}", "followers_url": "https://api.github.com/users/unography/followers", "following_url": "https://api.github.com/users/unography/following{/other_user}", "gists_url": "https://api.github.com/users/unography/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/unography", "id": 5240449, "login": "unography", "node_id": "MDQ6VXNlcjUyNDA0NDk=", "organizations_url": "https://api.github.com/users/unography/orgs", "received_events_url": "https://api.github.com/users/unography/received_events", "repos_url": "https://api.github.com/users/unography/repos", "site_admin": false, "starred_url": "https://api.github.com/users/unography/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/unography/subscriptions", "type": "User", "url": "https://api.github.com/users/unography", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[]
2024-11-08T23:21:40Z
2024-11-09T16:14:37Z
2024-11-09T16:14:37Z
NONE
null
null
null
null
### Feature request https://github.com/huggingface/datasets/pull/6464 mentions a `num_proc` param while loading dataset from disk, but can't find that in the documentation and code anywhere ### Motivation Make loading large datasets from disk faster ### Your contribution Happy to contribute if given pointers
{ "avatar_url": "https://avatars.githubusercontent.com/u/5240449?v=4", "events_url": "https://api.github.com/users/unography/events{/privacy}", "followers_url": "https://api.github.com/users/unography/followers", "following_url": "https://api.github.com/users/unography/following{/other_user}", "gists_url": "https://api.github.com/users/unography/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/unography", "id": 5240449, "login": "unography", "node_id": "MDQ6VXNlcjUyNDA0NDk=", "organizations_url": "https://api.github.com/users/unography/orgs", "received_events_url": "https://api.github.com/users/unography/received_events", "repos_url": "https://api.github.com/users/unography/repos", "site_admin": false, "starred_url": "https://api.github.com/users/unography/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/unography/subscriptions", "type": "User", "url": "https://api.github.com/users/unography", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7286/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7286/timeline
null
not_planned
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7282
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7282/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7282/comments
https://api.github.com/repos/huggingface/datasets/issues/7282/events
https://github.com/huggingface/datasets/issues/7282
2,642,075,491
I_kwDODunzps6det9j
7,282
Faulty datasets.exceptions.ExpectedMoreSplitsError
{ "avatar_url": "https://avatars.githubusercontent.com/u/90473723?v=4", "events_url": "https://api.github.com/users/meg-huggingface/events{/privacy}", "followers_url": "https://api.github.com/users/meg-huggingface/followers", "following_url": "https://api.github.com/users/meg-huggingface/following{/other_user}", "gists_url": "https://api.github.com/users/meg-huggingface/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/meg-huggingface", "id": 90473723, "login": "meg-huggingface", "node_id": "MDQ6VXNlcjkwNDczNzIz", "organizations_url": "https://api.github.com/users/meg-huggingface/orgs", "received_events_url": "https://api.github.com/users/meg-huggingface/received_events", "repos_url": "https://api.github.com/users/meg-huggingface/repos", "site_admin": false, "starred_url": "https://api.github.com/users/meg-huggingface/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/meg-huggingface/subscriptions", "type": "User", "url": "https://api.github.com/users/meg-huggingface", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2024-11-07T20:15:01Z
2024-11-07T20:15:42Z
null
CONTRIBUTOR
null
null
null
null
### Describe the bug Trying to download only the 'validation' split of my dataset; instead hit the error `datasets.exceptions.ExpectedMoreSplitsError`. Appears to be the same undesired behavior as reported in [#6939](https://github.com/huggingface/datasets/issues/6939), but with `data_files`, not `data_dir`. Here is the Traceback: ``` Traceback (most recent call last): File "/home/user/app/app.py", line 12, in <module> ds = load_dataset('datacomp/imagenet-1k-random0.0', token=GATED_IMAGENET, data_files={'validation': 'data/val*'}, split='validation', trust_remote_code=True) File "/usr/local/lib/python3.10/site-packages/datasets/load.py", line 2154, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/site-packages/datasets/builder.py", line 1018, in _download_and_prepare verify_splits(self.info.splits, split_dict) File "/usr/local/lib/python3.10/site-packages/datasets/utils/info_utils.py", line 68, in verify_splits raise ExpectedMoreSplitsError(str(set(expected_splits) - set(recorded_splits))) datasets.exceptions.ExpectedMoreSplitsError: {'train', 'test'} ``` Note: I am using the `data_files` argument only because I am trying to specify that I only want the 'validation' split, and the whole dataset will be downloaded even when the `split='validation'` argument is specified, unless you also specify `data_files`, as described here: https://discuss.huggingface.co/t/how-can-i-download-a-specific-split-of-a-dataset/79027 ### Steps to reproduce the bug 1. Create a Space with the default blank 'gradio' SDK https://huggingface.co/new-space 2. Create a file 'app.py' that loads a dataset to only extract a 'validation' split: `ds = load_dataset('datacomp/imagenet-1k-random0.0', token=GATED_IMAGENET, data_files={'validation': 'data/val*'}, split='validation', trust_remote_code=True)` ### Expected behavior Downloading validation split. ### Environment info Default environment for creating a new Space. Relevant to this bug, that is: ``` FROM docker.io/library/python:3.10@sha256:fd0fa50d997eb56ce560c6e5ca6a1f5cf8fdff87572a16ac07fb1f5ca01eb608 --> RUN pip install --no-cache-dir pip==22.3.1 && pip install --no-cache-dir datasets "huggingface-hub>=0.19" "hf-transfer>=0.1.4" "protobuf<4" "click<8.1" ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7282/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7282/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://api.github.com/repos/huggingface/datasets/issues/7281
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7281/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7281/comments
https://api.github.com/repos/huggingface/datasets/issues/7281/events
https://github.com/huggingface/datasets/issues/7281
2,640,346,339
I_kwDODunzps6dYHzj
7,281
File not found error
{ "avatar_url": "https://avatars.githubusercontent.com/u/37507786?v=4", "events_url": "https://api.github.com/users/MichielBontenbal/events{/privacy}", "followers_url": "https://api.github.com/users/MichielBontenbal/followers", "following_url": "https://api.github.com/users/MichielBontenbal/following{/other_user}", "gists_url": "https://api.github.com/users/MichielBontenbal/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MichielBontenbal", "id": 37507786, "login": "MichielBontenbal", "node_id": "MDQ6VXNlcjM3NTA3Nzg2", "organizations_url": "https://api.github.com/users/MichielBontenbal/orgs", "received_events_url": "https://api.github.com/users/MichielBontenbal/received_events", "repos_url": "https://api.github.com/users/MichielBontenbal/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MichielBontenbal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MichielBontenbal/subscriptions", "type": "User", "url": "https://api.github.com/users/MichielBontenbal", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Link to the dataset: https://huggingface.co/datasets/MichielBontenbal/UrbanSounds " ]
2024-11-07T09:04:49Z
2024-11-07T09:22:43Z
null
NONE
null
null
null
null
### Describe the bug I get a FileNotFoundError: <img width="944" alt="image" src="https://github.com/user-attachments/assets/1336bc08-06f6-4682-a3c0-071ff65efa87"> ### Steps to reproduce the bug See screenshot. ### Expected behavior I want to load one audiofile from the dataset. ### Environment info MacOs Intel 14.6.1 (23G93) Python 3.10.9 Numpy 1.23 Datasets latest version
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7281/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7281/timeline
null
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false