Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Tags:
code
DOI:
Libraries:
Datasets
Dask
License:
jugalgajjar's picture
Update README.md
d8f648c verified
---
license: mit
language:
- en
tags:
- code
---
# MultiLang Code Parser Dataset (MLCPD)
[![License](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![GitHub](https://img.shields.io/badge/GitHub-Repository-181717.svg?logo=github)](https://github.com/JugalGajjar/MultiLang-Code-Parser-Dataset)
[![arXiv](https://img.shields.io/badge/arXiv-2510.16357-b31b1b.svg)](https://arxiv.org/abs/2510.16357)
**MultiLang-Code-Parser-Dataset (MLCPD)** provides a large-scale, unified dataset of parsed source code across 10 major programming languages, represented under a universal schema that captures syntax, semantics, and structure in a consistent format.
Each entry corresponds to one parsed source file and includes:
- Language metadata
- Code-level statistics (lines, errors, AST nodes)
- Universal Schema JSON (normalized structural representation)
MLCPD enables robust cross-language analysis, code understanding, and representation learning by providing a consistent, language-agnostic data structure suitable for both traditional ML and modern LLM-based workflows.
---
## 📂 Dataset Structure
```
MultiLang-Code-Parser-Dataset/
├── c_parsed_1.parquet
├── c_parsed_2.parquet
├── c_parsed_3.parquet
├── c_parsed_4.parquet
├── c_sharp_parsed_1.parquet
├── ...
└── typescript_parsed_4.parquet
```
Each file corresponds to one partition of a language (~175k rows each).
Each record contains:
| Field | Type | Description |
|--------|------|-------------|
| `language` | `str` | Programming language name |
| `code` | `str` | Raw source code |
| `avg_line_length` | `float` | Average line length |
| `line_count` | `int` | Number of lines |
| `lang_specific_parse` | `str` | TreeSitter parse output |
| `ast_node_count` | `int` | Number of AST nodes |
| `num_errors` | `int` | Parse errors |
| `universal_schema` | `str` | JSON-formatted unified schema |
---
## 📊 Key Statistics
| Metric | Value |
|--------|--------|
| Total Languages | 10 |
| Total Files | 40 |
| Total Records | 7,021,722 |
| Successful Conversions | 7,021,718 (99.9999%) |
| Failed Conversions | 4 (3 in C, 1 in C++) |
| Disk Size | ~114 GB (Parquet format) |
| Memory Size | ~600 GB (Parquet format) |
The dataset is clean, lossless, and statistically balanced across languages.
It offers both per-language and combined cross-language representations.
---
## 🚀 Use Cases
MLCPD can be directly used for:
- Cross-language code representation learning
- Program understanding and code similarity tasks
- Syntax-aware pretraining for LLMs
- Code summarization, clone detection, and bug prediction
- Graph-based learning on universal ASTs
- Benchmark creation for cross-language code reasoning
---
## 🔍 Features
- **Universal Schema:** A unified structural representation harmonizing AST node types across languages.
- **Compact Format:** Stored in Apache Parquet, allowing fast access and efficient querying.
- **Cross-Language Compatibility:** Enables comparative code structure analysis across multiple programming ecosystems.
- **Error-Free Parsing:** 99.9999% successful schema conversions across ~7M code files.
- **Statistical Richness:** Includes per-language metrics such as mean line count, AST size, and error ratios.
- **Ready for ML Pipelines:** Compatible with PyTorch, TensorFlow, Hugging Face Transformers, and graph-based models.
---
## 📥 How to Access the Dataset
### Using the Hugging Face `datasets` Library
This dataset is hosted on the Hugging Face Hub and can be easily accessed using the `datasets` library.
#### Install the Required Library
```bash
pip install datasets
```
#### Import Library
```bash
from datasets import load_dataset
```
#### Load the Entire Dataset
```bash
dataset = load_dataset(
"jugalgajjar/MultiLang-Code-Parser-Dataset"
)
```
#### Load a Specific Language File
```bash
dataset = load_dataset(
"jugalgajjar/MultiLang-Code-Parser-Dataset",
data_files="python_parsed_1.parquet"
)
```
#### Stream Data
```bash
dataset = load_dataset(
"jugalgajjar/MultiLang-Code-Parser-Dataset",
data_files="python_parsed_1.parquet",
streaming=True
)
```
#### Access Data Content (After Downloading)
```bash
try:
for example in dataset["train"].take(5):
print(example)
print("-"*25)
except Exception as e:
print(f"An error occurred: {e}")
```
### Manual Download
You can also manually download specific language files from the Hugging Face repository page:
1. Visit https://huggingface.co/datasets/jugalgajjar/MultiLang-Code-Parser-Dataset
2. Navigate to the Files tab
3. Click on the language file you want (e.g., `python_parsed_1.parquet`)
4. Use the Download button to save locally
---
## 🧾 Citation
If you use this dataset in your research or work, please cite the following paper:
> **Gajjar, J., & Subramaniakuppusamy, K. (2025).**
> *MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema.*
> *arXiv preprint* [arXiv:2510.16357](https://arxiv.org/abs/2510.16357)
```bibtex
@article{gajjar2025mlcpd,
title={MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema},
author={Gajjar, Jugal and Subramaniakuppusamy, Kamalasankari},
journal={arXiv preprint arXiv:2510.16357},
year={2025}
}
```
---
## 📜 License
This dataset is released under the MIT License.<br>
You are free to use, modify, and redistribute it for research and educational purposes, with proper attribution.
---
## 🙏 Acknowledgements
- [StarCoder Dataset](https://huggingface.co/datasets/bigcode/starcoderdata) for source code samples
- [TreeSitter](https://tree-sitter.github.io/tree-sitter/) for parsing
- [Hugging Face](https://huggingface.co/) for dataset hosting
---
## 📧 Contact
For questions, collaborations, or feedback:
- **Primary Author**: Jugal Gajjar
- **Email**: [812jugalgajjar@gmail.com](mailto:812jugalgajjar@gmail.com)
- **LinkedIn**: [linkedin.com/in/jugal-gajjar/](https://www.linkedin.com/in/jugal-gajjar/)
---
⭐ If you find this dataset useful, consider liking the dataset and the [GitHub repository](https://github.com/JugalGajjar/MultiLang-Code-Parser-Dataset) and sharing your work that uses it.