| import os | |
| import json | |
| import datasets | |
| _HOMEPAGE = "https://huggingface.co/datasets/zhenzi/data_process" | |
| _LICENSE = "Apache License 2.0" | |
| _CITATION = """\ | |
| @software{2022, | |
| title=数据集标题, | |
| author=zhenzi, | |
| year={2022}, | |
| month={March}, | |
| publisher = {GitHub} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| 数据集描述. | |
| """ | |
| _REPO = "https://huggingface.co/datasets/zhenzi/data_process/resolve/main/metadata" | |
| class ImageConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Imagette.""" | |
| def __init__(self, data_url, metadata_urls, **kwargs): | |
| super(ImageConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
| self.data_url = data_url | |
| self.metadata_urls = metadata_urls | |
| class Imagenette(datasets.GeneratorBasedBuilder): | |
| """Imagenette dataset.""" | |
| BUILDER_CONFIGS = [ | |
| ImageConfig( | |
| name="tests", | |
| description="测试", | |
| data_url="https://huggingface.co/datasets/zhenzi/test/resolve/main/tests.zip", | |
| metadata_urls={ | |
| "train": f"{_REPO}/tests/train.txt" | |
| }, | |
| ) | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION + self.config.description, | |
| features=datasets.Features( | |
| { | |
| "image": datasets.Image(), | |
| "text": datasets.Value("string"), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| archive_path = dl_manager.download(self.config.data_url) | |
| metadata_paths = dl_manager.download(self.config.metadata_urls) | |
| archive_iter = dl_manager.iter_archive(archive_path) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "images": archive_iter, | |
| "metadata_path": metadata_paths["train"], | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "images": archive_iter, | |
| "metadata_path": metadata_paths["validation"], | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, images, metadata_path): | |
| with open(metadata_path, encoding="utf-8") as f: | |
| files_to_keep = set(f.read().split("\n")) | |
| for file_path, file_obj in images: | |
| print(file_path) | |
| if file_path in files_to_keep: | |
| yield file_path, { | |
| "image": {"path": file_path, "bytes": file_obj.read()}, | |
| "text": "dee", | |
| } | |