AssertAI

A fine-tuned SLM to generate deterministic Python unit test plans in strict JSON. It's designed to act as a test-case planner, rather than a full code generator.

Base model: Llama3.2.

What it does

Given a function signature + docstring/spec, Assert-AI outputs:

  • a compact list of 2โ€“5 high-signal unit tests
  • each test includes args, kwargs, and either an expected value (expect) or expected exception (error)

Output format

Assert-AI outputs only this JSON object (no extra keys, no markdown):

{
  "fn": "safe_divide",
  "tests": [
    { "name": "divides_when_nonzero", "args": [19, -3], "kwargs": {"default": 0.0}, "expect": -6.333333333333333 },
    { "name": "returns_default_on_zero", "args": [19, 0.0], "kwargs": {"default": 1.5}, "expect": 1.5 }
  ]
}

Example User Input

Function spec:
def clamp(n: int, lo: int, hi: int) -> int:
  \"\"\"Return n bounded between lo and hi inclusive. Precondition: lo <= hi.\"\"\"

Author

Author: Sai Teja Erukude
Role: Developer & Maintainer

Downloads last month
46
GGUF
Model size
45.1M params
Architecture
llama
Hardware compatibility
Log In to view the estimation

We're not able to determine the quantization variants.

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support