|
|
from typing import Dict, List, Any |
|
|
from diffusers import DiffusionPipeline |
|
|
import torch |
|
|
from io import BytesIO |
|
|
import requests |
|
|
from PIL import Image |
|
|
import base64 |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
if device.type != 'cuda': |
|
|
raise ValueError("need to run on GPU") |
|
|
|
|
|
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16 |
|
|
|
|
|
class EndpointHandler(): |
|
|
def __init__(self, path=""): |
|
|
self.pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages", torch_dtype=dtype).to(device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
|
image = data.pop("image", None) |
|
|
|
|
|
image = self.decode_base64_image(image) |
|
|
low_res_img = image |
|
|
|
|
|
with torch.no_grad(): |
|
|
upscaled_image = self.pipeline(low_res_img, num_inference_steps=100, eta=1).images[0] |
|
|
|
|
|
return upscaled_image |
|
|
|
|
|
|
|
|
|
|
|
def decode_base64_image(self, image_string): |
|
|
base64_image = base64.b64decode(image_string) |
|
|
buffer = BytesIO(base64_image) |
|
|
image = Image.open(buffer) |
|
|
return image |
|
|
|