ML Inference Service
FastAPI service for serving ML models over HTTP. Comes with ResNet-18 for image classification out of the box, but you can swap in any model you want.
Quick Start
Local development:
# Install dependencies
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
# Download the example model
bash scripts/model_download.bash
# Run it
uvicorn main:app --reload
Server runs on http://127.0.0.1:8000. Check /docs for the interactive API documentation.
Docker:
# Build
docker build -t ml-inference-service:test .
# Run
docker run -d --name ml-inference-test -p 8000:8000 ml-inference-service:test
# Check logs
docker logs -f ml-inference-test
# Stop
docker stop ml-inference-test && docker rm ml-inference-test
Testing the API
# Using curl
curl -X POST http://localhost:8000/predict \
-H "Content-Type: application/json" \
-d '{
"image": {
"mediaType": "image/jpeg",
"data": "<base64-encoded-image>"
}
}'
Example response:
{
"prediction": "tiger cat",
"confidence": 0.394,
"predicted_label": 282,
"model": "microsoft/resnet-18",
"mediaType": "image/jpeg"
}
Project Structure
ml-inference-service/
βββ main.py # Entry point
βββ app/
β βββ core/
β β βββ app.py # App factory, config, DI, lifecycle
β β βββ logging.py # Logging setup
β βββ api/
β β βββ models.py # Request/response schemas
β β βββ controllers.py # Business logic
β β βββ routes/
β β βββ prediction.py # POST /predict
β βββ services/
β βββ base.py # Abstract InferenceService class
β βββ inference.py # ResNet implementation
βββ models/
β βββ microsoft/
β βββ resnet-18/ # Model weights and config
βββ scripts/
β βββ model_download.bash
β βββ generate_test_datasets.py
β βββ test_datasets.py
βββ Dockerfile # Multi-stage build
βββ .env.example # Environment config template
βββ requirements.txt
The key design decision here is that app/core/app.py consolidates everythingβconfig, dependency injection, lifecycle, and the app factory. This avoids the mess of managing global state across multiple files.
How to Plug In Your Own Model
The whole service is built around one abstract base class: InferenceService. Implement it for your model, and everything else just works.
Step 1: Create Your Service Class
# app/services/your_model_service.py
from app.services.base import InferenceService
from app.api.models import ImageRequest, PredictionResponse
import asyncio
class YourModelService(InferenceService[ImageRequest, PredictionResponse]):
def __init__(self, model_name: str):
self.model_name = model_name
self.model_path = f"models/{model_name}"
self.model = None
self._is_loaded = False
async def load_model(self) -> None:
"""Load your model here. Called once at startup."""
self.model = load_your_model(self.model_path)
self._is_loaded = True
async def predict(self, request: ImageRequest) -> PredictionResponse:
"""Run inference. Offload heavy work to thread pool."""
return await asyncio.to_thread(self._predict_sync, request)
def _predict_sync(self, request: ImageRequest) -> PredictionResponse:
"""Actual inference happens here."""
image = decode_base64_image(request.image.data)
result = self.model(image)
return PredictionResponse(
prediction=result.label,
confidence=result.confidence,
predicted_label=result.class_id,
model=self.model_name,
mediaType=request.image.mediaType
)
@property
def is_loaded(self) -> bool:
return self._is_loaded
Important: Use asyncio.to_thread() to run CPU-heavy inference in a background thread. This keeps the server responsive while your model is working.
Step 2: Register Your Service
Open app/core/app.py and find the lifespan function:
# Change this line:
service = ResNetInferenceService(model_name="microsoft/resnet-18")
# To this:
service = YourModelService(model_name="your-org/your-model")
That's it. The /predict endpoint now serves your model.
Model Files
Put your model files under models/ with the full org/model structure:
models/
βββ your-org/
βββ your-model/
βββ config.json
βββ weights.bin
βββ (other files)
No renaming, no dropping the org prefixβit just mirrors the Hugging Face structure.
Configuration
Settings are managed via environment variables or a .env file. See .env.example for all available options.
Default values:
APP_NAME: "ML Inference Service"APP_VERSION: "0.1.0"DEBUG: falseHOST: "0.0.0.0"PORT: 8000MODEL_NAME: "microsoft/resnet-18"
To customize:
# Copy the example
cp .env.example .env
# Edit values
vim .env
Or set environment variables directly:
export MODEL_NAME="google/vit-base-patch16-224"
uvicorn main:app --reload
Deployment
Development:
uvicorn main:app --reload
Production:
gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000
The service runs on CPU by default. For GPU inference, install CUDA-enabled PyTorch and modify your service to move tensors to the GPU device.
Docker:
- Multi-stage build keeps the image small
- Runs as non-root user (
appuser) - Python dependencies installed in user site-packages
- Model files baked into the image
What Happens When You Start the Server
INFO: Starting ML Inference Service...
INFO: Initializing ResNet service: models/microsoft/resnet-18
INFO: Loading model from models/microsoft/resnet-18
INFO: Model loaded: 1000 classes
INFO: Startup completed successfully
INFO: Uvicorn running on http://0.0.0.0:8000
If you see "Model directory not found", check that your model files exist at the expected path with the full org/model structure.
API Reference
Endpoint: POST /predict
Request:
{
"image": {
"mediaType": "image/jpeg", // or "image/png"
"data": "<base64-encoded-image>"
}
}
Response:
{
"prediction": "string", // Human-readable label
"confidence": 0.0, // Softmax probability
"predicted_label": 0, // Numeric class index
"model": "org/model-name", // Model identifier
"mediaType": "image/jpeg" // Echoed from request
}
Docs:
- Swagger UI:
http://localhost:8000/docs - ReDoc:
http://localhost:8000/redoc - OpenAPI JSON:
http://localhost:8000/openapi.json
PyArrow Test Datasets
We've included a test dataset system for validating your model. It generates 100 standardized test cases covering normal inputs, edge cases, performance benchmarks, and model comparisons.
Generate Datasets
python scripts/generate_test_datasets.py
This creates:
scripts/test_datasets/*.parquet- Test data (images, requests, expected responses)scripts/test_datasets/*_metadata.json- Human-readable descriptionsscripts/test_datasets/datasets_summary.json- Overview of all datasets
Run Tests
# Start your service first
uvicorn main:app --reload
# Quick test (5 samples per dataset)
python scripts/test_datasets.py --quick
# Full validation
python scripts/test_datasets.py
# Test specific category
python scripts/test_datasets.py --category edge_case
Dataset Categories (25 datasets each)
1. Standard Tests (standard_test_*.parquet)
- Normal images: random patterns, shapes, gradients
- Common sizes: 224x224, 256x256, 299x299, 384x384
- Formats: JPEG, PNG
- Purpose: Baseline validation
2. Edge Cases (edge_case_*.parquet)
- Tiny images (32x32, 1x1)
- Huge images (2048x2048)
- Extreme aspect ratios (1000x50)
- Corrupted data, malformed requests
- Purpose: Test error handling
3. Performance Benchmarks (performance_test_*.parquet)
- Batch sizes: 1, 5, 10, 25, 50, 100 images
- Latency and throughput tracking
- Purpose: Performance profiling
4. Model Comparisons (model_comparison_*.parquet)
- Same inputs across different architectures
- Models: ResNet-18/50, ViT, ConvNext, Swin
- Purpose: Cross-model benchmarking
Test Output
DATASET TESTING SUMMARY
============================================================
Datasets tested: 100
Successful datasets: 95
Failed datasets: 5
Total samples: 1,247
Overall success rate: 87.3%
Test duration: 45.2s
Performance:
Avg latency: 123.4ms
Median latency: 98.7ms
p95 latency: 342.1ms
Max latency: 2,341.0ms
Requests/sec: 27.6
Category breakdown:
standard: 25 datasets, 94.2% avg success
edge_case: 25 datasets, 76.8% avg success
performance: 25 datasets, 91.1% avg success
model_comparison: 25 datasets, 89.3% avg success
Common Issues
Port 8000 already in use:
# Find what's using it
lsof -i :8000
# Or just use a different port
uvicorn main:app --port 8080
Model not loading:
- Check the path: models should be in
models/<org>/<model-name>/ - Make sure you ran
bash scripts/model_download.bash - Check logs for the exact error
Slow inference:
- Inference runs on CPU by default
- For GPU: install CUDA PyTorch and modify service to use GPU device
- Consider using smaller models or quantization
License
MIT