example-submission / README.md
sachin sharma
updated README.md
0b393b6
|
raw
history blame
9.75 kB

ML Inference Service

FastAPI service for serving ML models over HTTP. Comes with ResNet-18 for image classification out of the box, but you can swap in any model you want.

Quick Start

Local development:

# Install dependencies
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

# Download the example model
bash scripts/model_download.bash

# Run it
uvicorn main:app --reload

Server runs on http://127.0.0.1:8000. Check /docs for the interactive API documentation.

Docker:

# Build
docker build -t ml-inference-service:test .

# Run
docker run -d --name ml-inference-test -p 8000:8000 ml-inference-service:test

# Check logs
docker logs -f ml-inference-test

# Stop
docker stop ml-inference-test && docker rm ml-inference-test

Testing the API

# Using curl
curl -X POST http://localhost:8000/predict \
  -H "Content-Type: application/json" \
  -d '{
    "image": {
      "mediaType": "image/jpeg",
      "data": "<base64-encoded-image>"
    }
  }'

Example response:

{
  "prediction": "tiger cat",
  "confidence": 0.394,
  "predicted_label": 282,
  "model": "microsoft/resnet-18",
  "mediaType": "image/jpeg"
}

Project Structure

ml-inference-service/
β”œβ”€β”€ main.py                      # Entry point
β”œβ”€β”€ app/
β”‚   β”œβ”€β”€ core/
β”‚   β”‚   β”œβ”€β”€ app.py               # App factory, config, DI, lifecycle
β”‚   β”‚   └── logging.py           # Logging setup
β”‚   β”œβ”€β”€ api/
β”‚   β”‚   β”œβ”€β”€ models.py            # Request/response schemas
β”‚   β”‚   β”œβ”€β”€ controllers.py       # Business logic
β”‚   β”‚   └── routes/
β”‚   β”‚       └── prediction.py    # POST /predict
β”‚   └── services/
β”‚       β”œβ”€β”€ base.py              # Abstract InferenceService class
β”‚       └── inference.py         # ResNet implementation
β”œβ”€β”€ models/
β”‚   └── microsoft/
β”‚       └── resnet-18/           # Model weights and config
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ model_download.bash
β”‚   β”œβ”€β”€ generate_test_datasets.py
β”‚   └── test_datasets.py
β”œβ”€β”€ Dockerfile                   # Multi-stage build
β”œβ”€β”€ .env.example                 # Environment config template
└── requirements.txt

The key design decision here is that app/core/app.py consolidates everythingβ€”config, dependency injection, lifecycle, and the app factory. This avoids the mess of managing global state across multiple files.

How to Plug In Your Own Model

The whole service is built around one abstract base class: InferenceService. Implement it for your model, and everything else just works.

Step 1: Create Your Service Class

# app/services/your_model_service.py
from app.services.base import InferenceService
from app.api.models import ImageRequest, PredictionResponse
import asyncio

class YourModelService(InferenceService[ImageRequest, PredictionResponse]):
    def __init__(self, model_name: str):
        self.model_name = model_name
        self.model_path = f"models/{model_name}"
        self.model = None
        self._is_loaded = False

    async def load_model(self) -> None:
        """Load your model here. Called once at startup."""
        self.model = load_your_model(self.model_path)
        self._is_loaded = True

    async def predict(self, request: ImageRequest) -> PredictionResponse:
        """Run inference. Offload heavy work to thread pool."""
        return await asyncio.to_thread(self._predict_sync, request)

    def _predict_sync(self, request: ImageRequest) -> PredictionResponse:
        """Actual inference happens here."""
        image = decode_base64_image(request.image.data)
        result = self.model(image)

        return PredictionResponse(
            prediction=result.label,
            confidence=result.confidence,
            predicted_label=result.class_id,
            model=self.model_name,
            mediaType=request.image.mediaType
        )

    @property
    def is_loaded(self) -> bool:
        return self._is_loaded

Important: Use asyncio.to_thread() to run CPU-heavy inference in a background thread. This keeps the server responsive while your model is working.

Step 2: Register Your Service

Open app/core/app.py and find the lifespan function:

# Change this line:
service = ResNetInferenceService(model_name="microsoft/resnet-18")

# To this:
service = YourModelService(model_name="your-org/your-model")

That's it. The /predict endpoint now serves your model.

Model Files

Put your model files under models/ with the full org/model structure:

models/
└── your-org/
    └── your-model/
        β”œβ”€β”€ config.json
        β”œβ”€β”€ weights.bin
        └── (other files)

No renaming, no dropping the org prefixβ€”it just mirrors the Hugging Face structure.

Configuration

Settings are managed via environment variables or a .env file. See .env.example for all available options.

Default values:

  • APP_NAME: "ML Inference Service"
  • APP_VERSION: "0.1.0"
  • DEBUG: false
  • HOST: "0.0.0.0"
  • PORT: 8000
  • MODEL_NAME: "microsoft/resnet-18"

To customize:

# Copy the example
cp .env.example .env

# Edit values
vim .env

Or set environment variables directly:

export MODEL_NAME="google/vit-base-patch16-224"
uvicorn main:app --reload

Deployment

Development:

uvicorn main:app --reload

Production:

gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:8000

The service runs on CPU by default. For GPU inference, install CUDA-enabled PyTorch and modify your service to move tensors to the GPU device.

Docker:

  • Multi-stage build keeps the image small
  • Runs as non-root user (appuser)
  • Python dependencies installed in user site-packages
  • Model files baked into the image

What Happens When You Start the Server

INFO: Starting ML Inference Service...
INFO: Initializing ResNet service: models/microsoft/resnet-18
INFO: Loading model from models/microsoft/resnet-18
INFO: Model loaded: 1000 classes
INFO: Startup completed successfully
INFO: Uvicorn running on http://0.0.0.0:8000

If you see "Model directory not found", check that your model files exist at the expected path with the full org/model structure.

API Reference

Endpoint: POST /predict

Request:

{
  "image": {
    "mediaType": "image/jpeg",  // or "image/png"
    "data": "<base64-encoded-image>"
  }
}

Response:

{
  "prediction": "string",      // Human-readable label
  "confidence": 0.0,           // Softmax probability
  "predicted_label": 0,        // Numeric class index
  "model": "org/model-name",   // Model identifier
  "mediaType": "image/jpeg"    // Echoed from request
}

Docs:

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc
  • OpenAPI JSON: http://localhost:8000/openapi.json

PyArrow Test Datasets

We've included a test dataset system for validating your model. It generates 100 standardized test cases covering normal inputs, edge cases, performance benchmarks, and model comparisons.

Generate Datasets

python scripts/generate_test_datasets.py

This creates:

  • scripts/test_datasets/*.parquet - Test data (images, requests, expected responses)
  • scripts/test_datasets/*_metadata.json - Human-readable descriptions
  • scripts/test_datasets/datasets_summary.json - Overview of all datasets

Run Tests

# Start your service first
uvicorn main:app --reload

# Quick test (5 samples per dataset)
python scripts/test_datasets.py --quick

# Full validation
python scripts/test_datasets.py

# Test specific category
python scripts/test_datasets.py --category edge_case

Dataset Categories (25 datasets each)

1. Standard Tests (standard_test_*.parquet)

  • Normal images: random patterns, shapes, gradients
  • Common sizes: 224x224, 256x256, 299x299, 384x384
  • Formats: JPEG, PNG
  • Purpose: Baseline validation

2. Edge Cases (edge_case_*.parquet)

  • Tiny images (32x32, 1x1)
  • Huge images (2048x2048)
  • Extreme aspect ratios (1000x50)
  • Corrupted data, malformed requests
  • Purpose: Test error handling

3. Performance Benchmarks (performance_test_*.parquet)

  • Batch sizes: 1, 5, 10, 25, 50, 100 images
  • Latency and throughput tracking
  • Purpose: Performance profiling

4. Model Comparisons (model_comparison_*.parquet)

  • Same inputs across different architectures
  • Models: ResNet-18/50, ViT, ConvNext, Swin
  • Purpose: Cross-model benchmarking

Test Output

DATASET TESTING SUMMARY
============================================================
Datasets tested: 100
Successful datasets: 95
Failed datasets: 5
Total samples: 1,247
Overall success rate: 87.3%
Test duration: 45.2s

Performance:
  Avg latency: 123.4ms
  Median latency: 98.7ms
  p95 latency: 342.1ms
  Max latency: 2,341.0ms
  Requests/sec: 27.6

Category breakdown:
  standard: 25 datasets, 94.2% avg success
  edge_case: 25 datasets, 76.8% avg success
  performance: 25 datasets, 91.1% avg success
  model_comparison: 25 datasets, 89.3% avg success

Common Issues

Port 8000 already in use:

# Find what's using it
lsof -i :8000

# Or just use a different port
uvicorn main:app --port 8080

Model not loading:

  • Check the path: models should be in models/<org>/<model-name>/
  • Make sure you ran bash scripts/model_download.bash
  • Check logs for the exact error

Slow inference:

  • Inference runs on CPU by default
  • For GPU: install CUDA PyTorch and modify service to use GPU device
  • Consider using smaller models or quantization

License

MIT