example-submission / scripts /test_datasets.py
jessehostetler's picture
Clean up docs. Fix test script incorrect path.
a12ee73
raw
history blame
15.3 kB
#!/usr/bin/env python3
"""
Dataset Tester for ML Inference Service
Tests the generated PyArrow datasets against the running ML inference service.
Validates API requests/responses and measures performance metrics.
"""
import json
import time
import asyncio
import statistics
from pathlib import Path
from typing import Dict, List, Any, Optional
import argparse
import pyarrow.parquet as pq
import requests
import pandas as pd
class DatasetTester:
def __init__(self, base_url: str = "http://127.0.0.1:8000", datasets_dir: str = "test_datasets"):
self.base_url = base_url.rstrip('/')
self.datasets_dir = Path(datasets_dir)
self.endpoint = f"{self.base_url}/predict"
self.results = []
def load_dataset(self, dataset_path: Path) -> pd.DataFrame:
"""Load a PyArrow dataset."""
table = pq.read_table(dataset_path)
return table.to_pandas()
def test_api_connection(self) -> bool:
"""Test if the API is running and accessible."""
try:
response = requests.get(f"{self.base_url}/docs", timeout=5)
return response.status_code == 200
except requests.RequestException:
return False
def send_prediction_request(self, api_request_json: str) -> Dict[str, Any]:
"""Send a single prediction request to the API."""
try:
request_data = json.loads(api_request_json)
start_time = time.time()
response = requests.post(
self.endpoint,
json=request_data,
headers={"Content-Type": "application/json"},
timeout=30
)
end_time = time.time()
latency_ms = (end_time - start_time) * 1000
return {
"success": response.status_code == 200,
"status_code": response.status_code,
"response": response.json() if response.status_code == 200 else response.text,
"latency_ms": round(latency_ms, 2),
"error": None
}
except requests.RequestException as e:
return {
"success": False,
"status_code": None,
"response": None,
"latency_ms": None,
"error": str(e)
}
except json.JSONDecodeError as e:
return {
"success": False,
"status_code": None,
"response": None,
"latency_ms": None,
"error": f"JSON decode error: {str(e)}"
}
def validate_response(self, actual_response: Dict[str, Any],
expected_response_json: str) -> Dict[str, Any]:
"""Validate API response against expected response."""
try:
expected = json.loads(expected_response_json)
validation = {
"structure_valid": True,
"field_errors": []
}
# Check required fields exist
required_fields = ["prediction", "confidence", "predicted_label", "model", "mediaType"]
for field in required_fields:
if field not in actual_response:
validation["structure_valid"] = False
validation["field_errors"].append(f"Missing field: {field}")
# Validate field types
if "confidence" in actual_response:
if not isinstance(actual_response["confidence"], (int, float)):
validation["field_errors"].append("confidence must be numeric")
elif not (0 <= actual_response["confidence"] <= 1):
validation["field_errors"].append("confidence must be between 0 and 1")
if "predicted_label" in actual_response:
if not isinstance(actual_response["predicted_label"], int):
validation["field_errors"].append("predicted_label must be integer")
return validation
except json.JSONDecodeError:
return {
"structure_valid": False,
"field_errors": ["Invalid expected response JSON"]
}
def test_dataset(self, dataset_path: Path, max_samples: Optional[int] = None) -> Dict[str, Any]:
"""Test a single dataset."""
print(f"๐Ÿ“Š Testing dataset: {dataset_path.name}")
try:
df = self.load_dataset(dataset_path)
if max_samples:
df = df.head(max_samples)
results = {
"dataset_name": dataset_path.stem,
"total_samples": len(df),
"tested_samples": 0,
"successful_requests": 0,
"failed_requests": 0,
"validation_errors": 0,
"latencies_ms": [],
"errors": [],
"category": df['test_category'].iloc[0] if not df.empty else "unknown"
}
for idx, row in df.iterrows():
print(f" Testing sample {idx + 1}/{len(df)}", end="\r")
# Send API request
api_result = self.send_prediction_request(row['api_request'])
results["tested_samples"] += 1
if api_result["success"]:
results["successful_requests"] += 1
results["latencies_ms"].append(api_result["latency_ms"])
# Validate response structure
validation = self.validate_response(
api_result["response"],
row['expected_response']
)
if not validation["structure_valid"]:
results["validation_errors"] += 1
results["errors"].append({
"sample_id": row['image_id'],
"type": "validation_error",
"details": validation["field_errors"]
})
else:
results["failed_requests"] += 1
results["errors"].append({
"sample_id": row['image_id'],
"type": "request_failed",
"status_code": api_result["status_code"],
"error": api_result["error"]
})
# Calculate statistics
if results["latencies_ms"]:
results["avg_latency_ms"] = round(statistics.mean(results["latencies_ms"]), 2)
results["min_latency_ms"] = round(min(results["latencies_ms"]), 2)
results["max_latency_ms"] = round(max(results["latencies_ms"]), 2)
results["median_latency_ms"] = round(statistics.median(results["latencies_ms"]), 2)
else:
results.update({
"avg_latency_ms": None,
"min_latency_ms": None,
"max_latency_ms": None,
"median_latency_ms": None
})
results["success_rate"] = round(
results["successful_requests"] / results["tested_samples"] * 100, 2
) if results["tested_samples"] > 0 else 0
print(f"\n โœ… Completed: {results['success_rate']}% success rate")
return results
except Exception as e:
print(f"\n โŒ Failed to test dataset: {str(e)}")
return {
"dataset_name": dataset_path.stem,
"error": str(e),
"success_rate": 0
}
def test_all_datasets(self, max_samples_per_dataset: Optional[int] = None,
category_filter: Optional[str] = None) -> Dict[str, Any]:
"""Test all datasets or filtered by category."""
if not self.test_api_connection():
print("โŒ API is not accessible. Please start the service first:")
print(" uvicorn main:app --reload")
return {"error": "API not accessible"}
print(f" Starting dataset testing against {self.endpoint}")
parquet_files = list(self.datasets_dir.glob("*.parquet"))
if not parquet_files:
print(f"โŒ No datasets found in {self.datasets_dir}")
return {"error": "No datasets found"}
if category_filter:
parquet_files = [f for f in parquet_files if category_filter in f.name]
print(f" Found {len(parquet_files)} datasets to test")
all_results = []
start_time = time.time()
for dataset_file in parquet_files:
result = self.test_dataset(dataset_file, max_samples_per_dataset)
all_results.append(result)
end_time = time.time()
total_time = end_time - start_time
summary = self.generate_summary(all_results, total_time)
self.save_results(summary, all_results)
return summary
def generate_summary(self, results: List[Dict[str, Any]], total_time: float) -> Dict[str, Any]:
"""Generate summary of all test results."""
successful_datasets = [r for r in results if r.get("success_rate", 0) > 0]
failed_datasets = [r for r in results if r.get("error") or r.get("success_rate", 0) == 0]
total_samples = sum(r.get("tested_samples", 0) for r in results)
total_successful = sum(r.get("successful_requests", 0) for r in results)
total_failed = sum(r.get("failed_requests", 0) for r in results)
all_latencies = []
for r in results:
all_latencies.extend(r.get("latencies_ms", []))
summary = {
"test_summary": {
"total_datasets": len(results),
"successful_datasets": len(successful_datasets),
"failed_datasets": len(failed_datasets),
"total_samples_tested": total_samples,
"total_successful_requests": total_successful,
"total_failed_requests": total_failed,
"overall_success_rate": round(
total_successful / total_samples * 100, 2
) if total_samples > 0 else 0,
"total_test_time_seconds": round(total_time, 2)
},
"performance_metrics": {
"avg_latency_ms": round(statistics.mean(all_latencies), 2) if all_latencies else None,
"median_latency_ms": round(statistics.median(all_latencies), 2) if all_latencies else None,
"min_latency_ms": round(min(all_latencies), 2) if all_latencies else None,
"max_latency_ms": round(max(all_latencies), 2) if all_latencies else None,
"requests_per_second": round(
total_successful / total_time, 2
) if total_time > 0 else 0
},
"category_breakdown": {},
"failed_datasets": [r["dataset_name"] for r in failed_datasets]
}
categories = {}
for result in results:
category = result.get("category", "unknown")
if category not in categories:
categories[category] = {
"count": 0,
"success_rates": [],
"avg_success_rate": 0
}
categories[category]["count"] += 1
categories[category]["success_rates"].append(result.get("success_rate", 0))
for category, data in categories.items():
data["avg_success_rate"] = round(
statistics.mean(data["success_rates"]), 2
) if data["success_rates"] else 0
summary["category_breakdown"] = categories
return summary
def save_results(self, summary: Dict[str, Any], detailed_results: List[Dict[str, Any]]):
"""Save test results to files."""
results_dir = Path("test_results")
results_dir.mkdir(exist_ok=True)
timestamp = int(time.time())
# Save summary
summary_path = results_dir / f"test_summary_{timestamp}.json"
with open(summary_path, 'w') as f:
json.dump(summary, f, indent=2)
# Save detailed results
detailed_path = results_dir / f"test_detailed_{timestamp}.json"
with open(detailed_path, 'w') as f:
json.dump(detailed_results, f, indent=2)
print(f" Results saved:")
print(f" Summary: {summary_path}")
print(f" Details: {detailed_path}")
def print_summary(self, summary: Dict[str, Any]):
"""Print test summary to console."""
print("\n" + "="*60)
print("๐Ÿ DATASET TESTING SUMMARY")
print("="*60)
ts = summary["test_summary"]
print(f"Datasets tested: {ts['total_datasets']}")
print(f"Successful datasets: {ts['successful_datasets']}")
print(f"Failed datasets: {ts['failed_datasets']}")
print(f"Total samples: {ts['total_samples_tested']}")
print(f"Overall success rate: {ts['overall_success_rate']}%")
print(f"Test duration: {ts['total_test_time_seconds']}s")
pm = summary["performance_metrics"]
if pm["avg_latency_ms"]:
print(f"\nPerformance:")
print(f" Avg latency: {pm['avg_latency_ms']}ms")
print(f" Median latency: {pm['median_latency_ms']}ms")
print(f" Min latency: {pm['min_latency_ms']}ms")
print(f" Max latency: {pm['max_latency_ms']}ms")
print(f" Requests/sec: {pm['requests_per_second']}")
print(f"\nCategory breakdown:")
for category, data in summary["category_breakdown"].items():
print(f" {category}: {data['count']} datasets, {data['avg_success_rate']}% avg success")
if summary["failed_datasets"]:
print(f"\nFailed datasets: {', '.join(summary['failed_datasets'])}")
def main():
parser = argparse.ArgumentParser(description="Test PyArrow datasets against ML inference service")
parser.add_argument("--base-url", default="http://127.0.0.1:8000", help="Base URL of the API")
parser.add_argument("--datasets-dir", default="test_datasets", help="Directory containing datasets")
parser.add_argument("--max-samples", type=int, help="Max samples per dataset to test")
parser.add_argument("--category", help="Filter datasets by category (standard, edge_case, performance, model_comparison)")
parser.add_argument("--quick", action="store_true", help="Quick test with max 5 samples per dataset")
args = parser.parse_args()
tester = DatasetTester(args.base_url, args.datasets_dir)
max_samples = args.max_samples
if args.quick:
max_samples = 5
results = tester.test_all_datasets(max_samples, args.category)
if "error" not in results:
tester.print_summary(results)
if results["test_summary"]["overall_success_rate"] > 90:
print("\n๐ŸŽ‰ Excellent! API is working great with the datasets!")
elif results["test_summary"]["overall_success_rate"] > 70:
print("\n๐Ÿ‘ Good! API works well, minor issues detected.")
else:
print("\nโš ๏ธ Warning: Several issues detected. Check the detailed results.")
if __name__ == "__main__":
main()