Remove Hugging Face download
Browse files- requirements.txt +2 -1
- s2_download_data.py +1 -19
- s3_data_to_vector_embedding.py +0 -1
- s5-how-to-umap.py +72 -34
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ youtube_transcript_api
|
|
| 7 |
torch
|
| 8 |
transformers
|
| 9 |
matplotlib
|
| 10 |
-
seaborn
|
|
|
|
|
|
| 7 |
torch
|
| 8 |
transformers
|
| 9 |
matplotlib
|
| 10 |
+
seaborn
|
| 11 |
+
datasets
|
s2_download_data.py
CHANGED
|
@@ -1,9 +1,6 @@
|
|
| 1 |
import requests
|
| 2 |
from PIL import Image
|
| 3 |
from IPython.display import display
|
| 4 |
-
import huggingface_hub
|
| 5 |
-
from huggingface_hub import list_datasets
|
| 6 |
-
from huggingface_hub import HfApi
|
| 7 |
|
| 8 |
# You can use your own uploaded images and captions.
|
| 9 |
# You will be responsible for the legal use of images that
|
|
@@ -49,19 +46,4 @@ def download_images():
|
|
| 49 |
caption = img['caption']
|
| 50 |
display(image)
|
| 51 |
print(caption)
|
| 52 |
-
|
| 53 |
-
def load_data_from_huggingface(hf_dataset_name):
|
| 54 |
-
|
| 55 |
-
api = HfApi()
|
| 56 |
-
|
| 57 |
-
#list models from huggingface
|
| 58 |
-
|
| 59 |
-
#models = list(api.list_models())
|
| 60 |
-
|
| 61 |
-
#list datasets from huggingface
|
| 62 |
-
|
| 63 |
-
#datasets = list(api.list_datasets())
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
return api.list_datasets(search=hf_dataset_name)
|
| 67 |
-
|
|
|
|
| 1 |
import requests
|
| 2 |
from PIL import Image
|
| 3 |
from IPython.display import display
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# You can use your own uploaded images and captions.
|
| 6 |
# You will be responsible for the legal use of images that
|
|
|
|
| 46 |
caption = img['caption']
|
| 47 |
display(image)
|
| 48 |
print(caption)
|
| 49 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s3_data_to_vector_embedding.py
CHANGED
|
@@ -58,5 +58,4 @@ def save_embeddings():
|
|
| 58 |
print(embedding['cross_modal_embeddings'][0].shape) #<class 'torch.Tensor'>
|
| 59 |
torch.save(embedding['cross_modal_embeddings'][0], img['tensor_path'] + '.pt')
|
| 60 |
|
| 61 |
-
save_embeddings()
|
| 62 |
|
|
|
|
| 58 |
print(embedding['cross_modal_embeddings'][0].shape) #<class 'torch.Tensor'>
|
| 59 |
torch.save(embedding['cross_modal_embeddings'][0], img['tensor_path'] + '.pt')
|
| 60 |
|
|
|
|
| 61 |
|
s5-how-to-umap.py
CHANGED
|
@@ -6,12 +6,13 @@ import pandas as pd
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import seaborn as sns
|
| 9 |
-
from s2_download_data import load_data_from_huggingface
|
| 10 |
-
from utils import prepare_dataset_for_umap_visualization as data_prep
|
| 11 |
from s3_data_to_vector_embedding import bt_embeddings_from_local
|
| 12 |
import random
|
| 13 |
import numpy as np
|
| 14 |
import torch
|
|
|
|
|
|
|
|
|
|
| 15 |
# prompt templates
|
| 16 |
templates = [
|
| 17 |
'a picture of {}',
|
|
@@ -23,10 +24,20 @@ templates = [
|
|
| 23 |
def data_prep(hf_dataset_name, templates=templates, test_size=1000):
|
| 24 |
# load Huggingface dataset (download if needed)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
dataset = load_data_from_huggingface(hf_dataset_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# split dataset with specific test_size
|
| 29 |
-
train_test_dataset =
|
|
|
|
| 30 |
# get the test dataset
|
| 31 |
test_dataset = train_test_dataset['test']
|
| 32 |
img_txt_pairs = []
|
|
@@ -36,30 +47,47 @@ def data_prep(hf_dataset_name, templates=templates, test_size=1000):
|
|
| 36 |
'pil_img' : test_dataset[i]['image']
|
| 37 |
})
|
| 38 |
return img_txt_pairs
|
| 39 |
-
|
| 40 |
-
# compute BridgeTower embeddings for cat image-text pairs
|
| 41 |
-
def load_cat_and_car_embeddings():
|
| 42 |
-
|
| 43 |
-
# prepare image_text pairs
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
cat_img_txt_pairs = data_prep("yashikota/cat-image-dataset",
|
| 48 |
-
"cat", test_size=50)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
# display an example of a cat image-text pair data
|
| 56 |
-
display(cat_img_txt_pairs[0]['caption'])
|
| 57 |
-
display(cat_img_txt_pairs[0]['pil_img'])
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def save_embeddings(embedding, path):
|
| 64 |
torch.save(embedding, path)
|
| 65 |
|
|
@@ -68,18 +96,18 @@ def load_cat_and_car_embeddings():
|
|
| 68 |
caption = img_txt_pair['caption']
|
| 69 |
return bt_embeddings_from_local(caption, pil_img)
|
| 70 |
|
| 71 |
-
def load_all_embeddings_from_image_text_pairs(file_name):
|
| 72 |
-
|
| 73 |
for img_txt_pair in tqdm(
|
| 74 |
-
|
| 75 |
-
total=len(
|
| 76 |
):
|
| 77 |
pil_img = img_txt_pair['pil_img']
|
| 78 |
caption = img_txt_pair['caption']
|
| 79 |
embedding = load_embeddings(caption, pil_img)
|
| 80 |
-
|
| 81 |
save_embeddings(cat_embeddings, file_name)
|
| 82 |
-
return
|
| 83 |
|
| 84 |
|
| 85 |
cat_embeddings = []
|
|
@@ -87,12 +115,12 @@ def load_cat_and_car_embeddings():
|
|
| 87 |
if (path.exists('./shared_data/cat_embeddings.pt')):
|
| 88 |
cat_embeddings = torch.load('./shared_data/cat_embeddings.pt')
|
| 89 |
else:
|
| 90 |
-
cat_embeddings = load_all_embeddings_from_image_text_pairs('./shared_data/cat_embeddings.pt')
|
| 91 |
|
| 92 |
if (path.exists('./shared_data/car_embeddings.pt')):
|
| 93 |
car_embeddings = torch.load('./shared_data/car_embeddings.pt')
|
| 94 |
else:
|
| 95 |
-
car_embeddings = load_all_embeddings_from_image_text_pairs('./shared_data/car_embeddings.pt')
|
| 96 |
|
| 97 |
return cat_embeddings, car_embeddings
|
| 98 |
|
|
@@ -135,5 +163,15 @@ def show_umap_visualization():
|
|
| 135 |
plt.xlabel('X')
|
| 136 |
plt.ylabel('Y')
|
| 137 |
plt.show()
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from tqdm import tqdm
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import seaborn as sns
|
|
|
|
|
|
|
| 9 |
from s3_data_to_vector_embedding import bt_embeddings_from_local
|
| 10 |
import random
|
| 11 |
import numpy as np
|
| 12 |
import torch
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
|
| 16 |
# prompt templates
|
| 17 |
templates = [
|
| 18 |
'a picture of {}',
|
|
|
|
| 24 |
def data_prep(hf_dataset_name, templates=templates, test_size=1000):
|
| 25 |
# load Huggingface dataset (download if needed)
|
| 26 |
|
| 27 |
+
dataset = load_dataset(hf_dataset_name, trust_remote_code=True)
|
| 28 |
+
#dataset = load_data_from_huggingface(hf_dataset_name)
|
| 29 |
+
def display_list(lst, indent=0):
|
| 30 |
+
for item in lst:
|
| 31 |
+
if isinstance(item, list):
|
| 32 |
+
display_list(item, indent + 2)
|
| 33 |
+
else:
|
| 34 |
+
print(' ' * indent + str(item))
|
| 35 |
+
|
| 36 |
+
# Example usage:
|
| 37 |
+
display_list(dataset)
|
| 38 |
# split dataset with specific test_size
|
| 39 |
+
train_test_dataset = train_test_split(dataset, test_size=test_size)
|
| 40 |
+
|
| 41 |
# get the test dataset
|
| 42 |
test_dataset = train_test_dataset['test']
|
| 43 |
img_txt_pairs = []
|
|
|
|
| 47 |
'pil_img' : test_dataset[i]['image']
|
| 48 |
})
|
| 49 |
return img_txt_pairs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# load cat and car image-text pairs
|
| 52 |
+
def load_pairs_from_dataset(dataset_name, file_name):
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
def load_dataset_locally(file_name):
|
| 55 |
+
with open(file_name, 'r') as f:
|
| 56 |
+
dataset = f.readlines()
|
| 57 |
+
return dataset
|
| 58 |
+
|
| 59 |
+
def save_dataset_locally(dataset_list, file_name):
|
| 60 |
+
with open(file_name, 'w') as f:
|
| 61 |
+
for item in dataset_list:
|
| 62 |
+
f.write("%s\n" % item)
|
| 63 |
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
def check_dataset_locally(file_name):
|
| 66 |
+
if (path.exists(file_name)):
|
| 67 |
+
return True
|
| 68 |
+
return False
|
| 69 |
+
|
| 70 |
+
if (check_dataset_locally(file_name)):
|
| 71 |
+
print('Dataset already exists')
|
| 72 |
+
img_txt_pairs = load_dataset_locally(file_name)
|
| 73 |
+
else:
|
| 74 |
+
print('Downloading dataset')
|
| 75 |
+
|
| 76 |
+
img_txt_pairs = data_prep(dataset_name, test_size=50)
|
| 77 |
+
save_dataset_locally(img_txt_pairs, file_name)
|
| 78 |
+
return img_txt_pairs
|
| 79 |
+
|
| 80 |
|
| 81 |
+
def load_all_dataset():
|
| 82 |
+
|
| 83 |
+
cat_img_txt_pairs = load_pairs_from_dataset("yashikota/cat-image-dataset", './shared_data/cat_img_txt_pairs.txt')
|
| 84 |
+
car_img_txt_pairs = load_pairs_from_dataset("tanganke/stanford_cars", './shared_data/car_img_txt_pairs.txt')
|
| 85 |
+
|
| 86 |
+
return cat_img_txt_pairs, car_img_txt_pairs
|
| 87 |
+
# compute BridgeTower embeddings for cat image-text pairs
|
| 88 |
+
def load_cat_and_car_embeddings():
|
| 89 |
+
# prepare image_text pairs
|
| 90 |
+
cat_img_txt_pairs, car_img_txt_pairs = load_all_dataset()
|
| 91 |
def save_embeddings(embedding, path):
|
| 92 |
torch.save(embedding, path)
|
| 93 |
|
|
|
|
| 96 |
caption = img_txt_pair['caption']
|
| 97 |
return bt_embeddings_from_local(caption, pil_img)
|
| 98 |
|
| 99 |
+
def load_all_embeddings_from_image_text_pairs(img_txt_pairs, file_name):
|
| 100 |
+
embeddings = []
|
| 101 |
for img_txt_pair in tqdm(
|
| 102 |
+
img_txt_pairs,
|
| 103 |
+
total=len(img_txt_pairs)
|
| 104 |
):
|
| 105 |
pil_img = img_txt_pair['pil_img']
|
| 106 |
caption = img_txt_pair['caption']
|
| 107 |
embedding = load_embeddings(caption, pil_img)
|
| 108 |
+
embeddings.append(embedding)
|
| 109 |
save_embeddings(cat_embeddings, file_name)
|
| 110 |
+
return embeddings
|
| 111 |
|
| 112 |
|
| 113 |
cat_embeddings = []
|
|
|
|
| 115 |
if (path.exists('./shared_data/cat_embeddings.pt')):
|
| 116 |
cat_embeddings = torch.load('./shared_data/cat_embeddings.pt')
|
| 117 |
else:
|
| 118 |
+
cat_embeddings = load_all_embeddings_from_image_text_pairs(cat_img_txt_pairs, './shared_data/cat_embeddings.pt')
|
| 119 |
|
| 120 |
if (path.exists('./shared_data/car_embeddings.pt')):
|
| 121 |
car_embeddings = torch.load('./shared_data/car_embeddings.pt')
|
| 122 |
else:
|
| 123 |
+
car_embeddings = load_all_embeddings_from_image_text_pairs(car_img_txt_pairs, './shared_data/car_embeddings.pt')
|
| 124 |
|
| 125 |
return cat_embeddings, car_embeddings
|
| 126 |
|
|
|
|
| 163 |
plt.xlabel('X')
|
| 164 |
plt.ylabel('Y')
|
| 165 |
plt.show()
|
| 166 |
+
|
| 167 |
+
def run():
|
| 168 |
+
cat_img_txt_pairs, car_img_txt_pairs = load_all_dataset()
|
| 169 |
+
# display an example of a cat image-text pair data
|
| 170 |
+
display(cat_img_txt_pairs[0]['caption'])
|
| 171 |
+
display(cat_img_txt_pairs[0]['pil_img'])
|
| 172 |
+
|
| 173 |
+
# display an example of a car image-text pair data
|
| 174 |
+
display(car_img_txt_pairs[0]['caption'])
|
| 175 |
+
display(car_img_txt_pairs[0]['pil_img'])
|
| 176 |
+
|
| 177 |
+
run()
|