Spaces:
Sleeping
Sleeping
Revert to gTTS for Hindi - reliable, works with Hindi text
Browse files- backend/app/multilingual_tts.py +40 -44
- backend/requirements.txt +1 -0
backend/app/multilingual_tts.py
CHANGED
|
@@ -110,41 +110,26 @@ class MultilingualTTSService:
|
|
| 110 |
print("[MultilingualTTSService] ✓ English vocoder loaded")
|
| 111 |
|
| 112 |
def _load_hindi_models(self):
|
| 113 |
-
"""Load Hindi
|
| 114 |
if self._xtts_model is None:
|
| 115 |
-
print("[MultilingualTTSService] Loading Hindi
|
| 116 |
try:
|
| 117 |
-
import
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
language='en',
|
| 125 |
-
speaker='v3_en_indic',
|
| 126 |
-
trust_repo=True
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
if isinstance(result, tuple):
|
| 130 |
-
self._xtts_model, _ = result
|
| 131 |
-
else:
|
| 132 |
-
self._xtts_model = result
|
| 133 |
-
|
| 134 |
-
print("[MultilingualTTSService] ✓ Hindi Silero TTS loaded successfully")
|
| 135 |
-
print("[MultilingualTTSService] Engine: Silero TTS (Neural v3_en_indic)")
|
| 136 |
-
print("[MultilingualTTSService] Language: Hindi (hindi_female speaker)")
|
| 137 |
-
print("[MultilingualTTSService] Voice: Natural female voice")
|
| 138 |
-
print("[MultilingualTTSService] TOS: No (Open source)")
|
| 139 |
|
| 140 |
-
except ImportError
|
| 141 |
raise ImportError(
|
| 142 |
-
"
|
| 143 |
-
"Install with: pip install
|
| 144 |
)
|
| 145 |
except Exception as e:
|
| 146 |
-
print(f"[MultilingualTTSService] Error loading
|
| 147 |
-
raise RuntimeError(f"Failed to load Hindi
|
| 148 |
|
| 149 |
def synthesize(self, text: str, voice_sample_path: Union[str, Path],
|
| 150 |
language: str = "english") -> np.ndarray:
|
|
@@ -203,30 +188,41 @@ class MultilingualTTSService:
|
|
| 203 |
return np.clip(synthesized, -1.0, 1.0)
|
| 204 |
|
| 205 |
def _synthesize_hindi(self, text: str, voice_sample_path: Union[str, Path]) -> np.ndarray:
|
| 206 |
-
"""Synthesize Hindi speech using
|
| 207 |
self._load_hindi_models()
|
| 208 |
|
| 209 |
print(f"[MultilingualTTSService] Synthesizing Hindi: {text[:50]}...")
|
| 210 |
|
| 211 |
try:
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
-
# Convert
|
| 219 |
-
|
| 220 |
-
audio = audio.numpy()
|
| 221 |
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
-
# Normalize to [-1, 1] range
|
| 225 |
-
max_val = np.max(np.abs(
|
| 226 |
-
if max_val >
|
| 227 |
-
|
| 228 |
|
| 229 |
-
return np.clip(
|
| 230 |
|
| 231 |
except Exception as e:
|
| 232 |
print(f"[MultilingualTTSService] Error during Hindi synthesis: {e}")
|
|
|
|
| 110 |
print("[MultilingualTTSService] ✓ English vocoder loaded")
|
| 111 |
|
| 112 |
def _load_hindi_models(self):
|
| 113 |
+
"""Load Hindi models - using Google Text-to-Speech (gTTS)."""
|
| 114 |
if self._xtts_model is None:
|
| 115 |
+
print("[MultilingualTTSService] Loading Hindi support (gTTS)...")
|
| 116 |
try:
|
| 117 |
+
from gtts import gTTS
|
| 118 |
+
print("[MultilingualTTSService] ✓ Hindi gTTS support loaded")
|
| 119 |
+
print("[MultilingualTTSService] Engine: Google Text-to-Speech (gTTS)")
|
| 120 |
+
print("[MultilingualTTSService] Language: Hindi (hin)")
|
| 121 |
+
print("[MultilingualTTSService] TOS: No (Google Cloud)")
|
| 122 |
+
# Mark as loaded (gTTS doesn't require actual model loading)
|
| 123 |
+
self._xtts_model = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
except ImportError:
|
| 126 |
raise ImportError(
|
| 127 |
+
"gTTS library required for Hindi support. "
|
| 128 |
+
"Install with: pip install gtts"
|
| 129 |
)
|
| 130 |
except Exception as e:
|
| 131 |
+
print(f"[MultilingualTTSService] Error loading Hindi support: {e}")
|
| 132 |
+
raise RuntimeError(f"Failed to load Hindi support: {e}")
|
| 133 |
|
| 134 |
def synthesize(self, text: str, voice_sample_path: Union[str, Path],
|
| 135 |
language: str = "english") -> np.ndarray:
|
|
|
|
| 188 |
return np.clip(synthesized, -1.0, 1.0)
|
| 189 |
|
| 190 |
def _synthesize_hindi(self, text: str, voice_sample_path: Union[str, Path]) -> np.ndarray:
|
| 191 |
+
"""Synthesize Hindi speech using Google Text-to-Speech (gTTS)."""
|
| 192 |
self._load_hindi_models()
|
| 193 |
|
| 194 |
print(f"[MultilingualTTSService] Synthesizing Hindi: {text[:50]}...")
|
| 195 |
|
| 196 |
try:
|
| 197 |
+
from gtts import gTTS
|
| 198 |
+
import io
|
| 199 |
+
from pydub import AudioSegment
|
| 200 |
+
|
| 201 |
+
# Generate speech using Google TTS
|
| 202 |
+
tts = gTTS(text=text, lang='hi', slow=False)
|
| 203 |
+
|
| 204 |
+
# Save to BytesIO buffer
|
| 205 |
+
buffer = io.BytesIO()
|
| 206 |
+
tts.write_to_fp(buffer)
|
| 207 |
+
buffer.seek(0)
|
| 208 |
+
|
| 209 |
+
# Load audio from buffer
|
| 210 |
+
audio_segment = AudioSegment.from_mp3(buffer)
|
| 211 |
|
| 212 |
+
# Convert to numpy array (mono, float32)
|
| 213 |
+
samples = np.array(audio_segment.get_array_of_samples(), dtype=np.float32)
|
|
|
|
| 214 |
|
| 215 |
+
# Handle stereo to mono conversion
|
| 216 |
+
if audio_segment.channels == 2:
|
| 217 |
+
# Convert stereo to mono by averaging channels
|
| 218 |
+
samples = samples.reshape((-1, 2)).mean(axis=1)
|
| 219 |
|
| 220 |
+
# Normalize to [-1, 1] range
|
| 221 |
+
max_val = np.max(np.abs(samples))
|
| 222 |
+
if max_val > 0:
|
| 223 |
+
samples = samples / (32767.0 if audio_segment.sample_width == 2 else 128.0)
|
| 224 |
|
| 225 |
+
return np.clip(samples, -1.0, 1.0)
|
| 226 |
|
| 227 |
except Exception as e:
|
| 228 |
print(f"[MultilingualTTSService] Error during Hindi synthesis: {e}")
|
backend/requirements.txt
CHANGED
|
@@ -16,3 +16,4 @@ unidecode>=1.3.2
|
|
| 16 |
webrtcvad==2.0.10
|
| 17 |
demucs==4.0.1
|
| 18 |
omegaconf==2.3.0
|
|
|
|
|
|
| 16 |
webrtcvad==2.0.10
|
| 17 |
demucs==4.0.1
|
| 18 |
omegaconf==2.3.0
|
| 19 |
+
gtts==2.4.0
|