HonestAI / HF_SPACES_DEPLOYMENT.md
JatsTheAIGen's picture
Security Enhancements: Production WSGI, Rate Limiting, Security Headers, Secure Logging
79ea999

Hugging Face Spaces Deployment Guide - HonestAI

πŸš€ Deployment to HF Spaces

This guide covers deploying the updated HonestAI application to Hugging Face Spaces.

πŸ“‹ Pre-Deployment Checklist

βœ… Required Files

  • Dockerfile - Container configuration
  • requirements.txt - Python dependencies
  • flask_api_standalone.py - Main application entry point
  • README.md - Updated with HonestAI Space URL
  • src/ - All source code
  • .env.example - Environment variable template

βœ… Recent Updates Included

  • Enhanced configuration management (src/config.py)
  • Performance metrics tracking (src/orchestrator_engine.py)
  • Updated model configurations (Llama 3.1 8B, e5-base-v2, Qwen 2.5 1.5B)
  • 4-bit quantization support
  • Cache directory management
  • Memory optimizations

πŸ”§ Deployment Steps

1. Verify Space Configuration

Space URL: https://huggingface.co/spaces/JatinAutonomousLabs/HonestAI

Space Settings:

  • SDK: Docker
  • Hardware: T4 GPU (16GB)
  • Visibility: Public
  • Storage: Persistent (for cache)

2. Set Environment Variables

In Space Settings β†’ Repository secrets, ensure:

  • HF_TOKEN - Your Hugging Face API token (required)
  • MAX_WORKERS - Optional (default: 4)
  • LOG_LEVEL - Optional (default: INFO)
  • HF_HOME - Optional (auto-configured)

3. Verify Dockerfile

The Dockerfile is configured for:

  • Python 3.10
  • Port 7860 (HF Spaces standard)
  • Health check endpoint
  • Flask API as entry point

4. Commit and Push Updates

# Ensure all changes are committed
git add .
git commit -m "Update: Performance metrics, enhanced config, model optimizations"

# Push to HF Spaces repository
git push origin main

5. Monitor Build

  • Build Time: 5-10 minutes (first build may take longer)
  • Watch Logs: Check Space logs for build progress
  • Health Check: /api/health endpoint should respond after build

πŸ“Š What's New in This Deployment

1. Performance Metrics

Every API response now includes comprehensive performance data:

{
  "performance": {
    "processing_time": 1230.5,
    "tokens_used": 456,
    "agents_used": 4,
    "confidence_score": 85.2,
    "agent_contributions": [...],
    "safety_score": 85.0
  }
}

2. Enhanced Configuration

  • Automatic cache directory management
  • Secure environment variable handling
  • Backward compatible settings
  • Validation and error handling

3. Model Optimizations

  • Llama 3.1 8B with 4-bit quantization (primary)
  • e5-base-v2 for embeddings (768 dimensions)
  • Qwen 2.5 1.5B for fast classification
  • Model preloading for faster responses

4. Memory Management

  • Optimized history tracking (limited to 50-100 entries)
  • Efficient agent call tracking
  • Memory-aware caching

πŸ§ͺ Testing After Deployment

1. Health Check

curl https://jatinautonomouslabs-honestai.hf.space/api/health

2. Test API Endpoint

import requests

response = requests.post(
    "https://huggingface.co/spaces/JatinAutonomousLabs/HonestAI/api/chat",
    json={
        "message": "Hello, what is machine learning?",
        "session_id": "test-session",
        "user_id": "test-user"
    }
)

data = response.json()
print(f"Response: {data['message']}")
print(f"Performance: {data.get('performance', {})}")

3. Verify Performance Metrics

Check that performance metrics are populated (not all zeros):

  • processing_time > 0
  • tokens_used > 0
  • agents_used > 0
  • agent_contributions not empty

πŸ” Troubleshooting

Build Fails

  • Check requirements.txt for conflicts
  • Verify Python version (3.10)
  • Check Dockerfile syntax

Runtime Errors

  • Verify HF_TOKEN is set in Space secrets
  • Check logs for permission errors
  • Verify cache directory is writable

Performance Issues

  • Check GPU memory usage
  • Monitor model loading times
  • Verify quantization is enabled

API Not Responding

  • Check health endpoint: /api/health
  • Verify Flask app is running on port 7860
  • Check Space logs for errors

πŸ“ Post-Deployment

1. Update Documentation

  • βœ… README.md updated with HonestAI URL
  • βœ… HF_SPACES_URL_GUIDE.md updated
  • βœ… API_DOCUMENTATION.md includes performance metrics

2. Monitor Metrics

  • Track response times
  • Monitor error rates
  • Check performance metrics accuracy

3. User Communication

  • Announce new features (performance metrics)
  • Update API documentation
  • Share new Space URL

πŸ”— Quick Links

βœ… Success Criteria

After deployment, verify:

  1. βœ… Space builds successfully
  2. βœ… Health endpoint responds
  3. βœ… API chat endpoint works
  4. βœ… Performance metrics are populated
  5. βœ… Models load with 4-bit quantization
  6. βœ… Cache directory is configured
  7. βœ… Logs show no critical errors

Last Updated: January 2024 Space: JatinAutonomousLabs/HonestAI Status: Ready for Deployment βœ