Context Structure Fix Implementation
Summary
Fixed context structure mismatches across all agents to properly use the Context Manager's actual data structure. All agents now correctly access interaction_contexts, user_context, and combined_context instead of non-existent keys like conversation_history or interactions.
Changes Made
1. Intent Recognition Agent (src/agents/intent_agent.py)
Problem: Was accessing context.get('conversation_history', []) which doesn't exist.
Fix:
- Now uses
combined_context(preferred) or builds frominteraction_contextsanduser_context - Shows last 2 interaction summaries for context awareness
- Includes user context if available
- Provides informative message when no context is available
Key Changes:
# OLD (line 109):
Available Context: {context.get('conversation_history', [])[-2:] if context else []}
# NEW:
# Uses combined_context if available, otherwise builds from interaction_contexts
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
Impact: Intent agent now sees actual conversation history, improving intent recognition accuracy for follow-up questions.
2. Response Synthesis Agent (src/agents/synthesis_agent.py)
Problem: Was accessing context.get('interactions', []) which doesn't exist.
Fix:
_build_context_section()now usescombined_context(preferred) or builds frominteraction_contexts- Updated
_summarize_interaction_contexts()to work with Context Manager structure - Added backward compatibility via
_summarize_interactions()wrapper - Updated logging and metadata to use correct keys
Key Changes:
# OLD (line 534):
interactions = context.get('interactions', [])
# NEW:
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')
Impact: Synthesis agent now uses actual conversation context for generating contextually relevant responses.
3. Safety Check Agent (src/agents/safety_agent.py)
Problem: Wasn't using context at all in safety analysis.
Fix:
- Enhanced
_build_safety_prompt()to include context information - Uses
user_contextand recentinteraction_contextsfor context-aware safety analysis - Helps safety agent understand conversational context when assessing content appropriateness
Key Changes:
# Added context awareness:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
# Includes context in safety analysis prompt
Impact: Safety analysis now considers conversation context, improving appropriateness assessment.
4. Skills Identification Agent (src/agents/skills_identification_agent.py)
Problem: Wasn't using context in skill identification.
Fix:
- Enhanced
_build_market_analysis_prompt()to accept and use context parameter - Includes user context and recent interaction contexts in market analysis
- Helps identify skills based on conversation continuity
Key Changes:
# Updated method signature:
def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None)
# Added context information:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
Impact: Skills identification now considers conversation history for better skill relevance.
Context Structure Reference
All agents now correctly use the Context Manager's structure:
context = {
"session_id": str,
"user_id": str,
"user_context": str, # 500-token user persona summary
"interaction_contexts": [ # List of interaction summary dicts
{
"summary": str, # 50-token interaction summary
"timestamp": str
},
...
],
"combined_context": str, # Pre-formatted: "[User Context]\n...\n[Interaction Context #N]\n..."
"preferences": dict,
"active_tasks": list,
"last_activity": str
}
Implementation Strategy
Priority Order
- Use
combined_contextfirst - Pre-formatted by Context Manager, most efficient - Fallback to building from components - If
combined_contextnot available - Handle empty context gracefully - Informative messages when no context exists
Context Access Pattern
# Preferred pattern used across all agents:
if context:
# Option 1: Use pre-formatted combined_context
combined_context = context.get('combined_context', '')
if combined_context:
# Use combined_context directly
context_info = combined_context
# Option 2: Build from components
else:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
# Build context_info from components
Testing Recommendations
Test Scenarios
First Turn (No Context)
- Verify agents handle empty context gracefully
- Verify informative messages when no context available
Second Turn (1 Interaction)
- Verify agents access
interaction_contexts[0] - Verify context appears in prompts
- Verify agents access
Multiple Turns (3+ Interactions)
- Verify agents use last N interaction contexts
- Verify context accumulates correctly
With User Persona (20+ Interactions)
- Verify
user_contextappears in prompts - Verify
combined_contextincludes user context
- Verify
Expected Behavior
| Turn | Intent Agent Sees | Synthesis Agent Sees | Safety Agent Sees | Skills Agent Sees |
|---|---|---|---|---|
| 1 | "No previous context" | Empty | No context | No context |
| 2 | Interaction #1 summary | Interaction #1 | Recent context | Recent context |
| 3+ | Last 2 interactions | All/Summarized interactions | Recent context | Recent context |
| 20+ | User context + interactions | User context + interactions | User context | User context |
Benefits
- Intent Recognition: Now context-aware, better accuracy for follow-up questions
- Response Synthesis: Uses conversation history for more relevant responses
- Safety Analysis: Context-aware appropriateness assessment
- Skills Identification: Considers conversation continuity for better skill matching
- Consistency: All agents use the same context structure
- Performance: Uses pre-formatted
combined_contextwhen available (more efficient)
Backward Compatibility
- Synthesis agent includes
_summarize_interactions()wrapper for backward compatibility - All changes are additive (enhancements) rather than breaking changes
- Fallback logic handles missing or incomplete context gracefully
Files Modified
src/agents/intent_agent.py- Fixed context access in_build_chain_of_thought_prompt()src/agents/synthesis_agent.py- Fixed_build_context_section()and related methodssrc/agents/safety_agent.py- Enhanced_build_safety_prompt()with contextsrc/agents/skills_identification_agent.py- Enhanced_build_market_analysis_prompt()with context
Verification
✅ No linting errors
✅ All agents use correct context keys
✅ Backward compatibility maintained
✅ Graceful handling of empty context
✅ Consistent implementation pattern across all agents