Research_AI_Assistant / CONTEXT_STRUCTURE_FIX_IMPLEMENTATION.md
JatsTheAIGen's picture
cache key error when user id changes -fixed task 1 31_10_2025 v5
f89bd21
|
raw
history blame
7.56 kB

Context Structure Fix Implementation

Summary

Fixed context structure mismatches across all agents to properly use the Context Manager's actual data structure. All agents now correctly access interaction_contexts, user_context, and combined_context instead of non-existent keys like conversation_history or interactions.

Changes Made

1. Intent Recognition Agent (src/agents/intent_agent.py)

Problem: Was accessing context.get('conversation_history', []) which doesn't exist.

Fix:

  • Now uses combined_context (preferred) or builds from interaction_contexts and user_context
  • Shows last 2 interaction summaries for context awareness
  • Includes user context if available
  • Provides informative message when no context is available

Key Changes:

# OLD (line 109):
Available Context: {context.get('conversation_history', [])[-2:] if context else []}

# NEW:
# Uses combined_context if available, otherwise builds from interaction_contexts
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')

Impact: Intent agent now sees actual conversation history, improving intent recognition accuracy for follow-up questions.


2. Response Synthesis Agent (src/agents/synthesis_agent.py)

Problem: Was accessing context.get('interactions', []) which doesn't exist.

Fix:

  • _build_context_section() now uses combined_context (preferred) or builds from interaction_contexts
  • Updated _summarize_interaction_contexts() to work with Context Manager structure
  • Added backward compatibility via _summarize_interactions() wrapper
  • Updated logging and metadata to use correct keys

Key Changes:

# OLD (line 534):
interactions = context.get('interactions', [])

# NEW:
combined_context = context.get('combined_context', '')
interaction_contexts = context.get('interaction_contexts', [])
user_context = context.get('user_context', '')

Impact: Synthesis agent now uses actual conversation context for generating contextually relevant responses.


3. Safety Check Agent (src/agents/safety_agent.py)

Problem: Wasn't using context at all in safety analysis.

Fix:

  • Enhanced _build_safety_prompt() to include context information
  • Uses user_context and recent interaction_contexts for context-aware safety analysis
  • Helps safety agent understand conversational context when assessing content appropriateness

Key Changes:

# Added context awareness:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])
# Includes context in safety analysis prompt

Impact: Safety analysis now considers conversation context, improving appropriateness assessment.


4. Skills Identification Agent (src/agents/skills_identification_agent.py)

Problem: Wasn't using context in skill identification.

Fix:

  • Enhanced _build_market_analysis_prompt() to accept and use context parameter
  • Includes user context and recent interaction contexts in market analysis
  • Helps identify skills based on conversation continuity

Key Changes:

# Updated method signature:
def _build_market_analysis_prompt(self, user_input: str, context: Dict[str, Any] = None)

# Added context information:
user_context = context.get('user_context', '')
interaction_contexts = context.get('interaction_contexts', [])

Impact: Skills identification now considers conversation history for better skill relevance.


Context Structure Reference

All agents now correctly use the Context Manager's structure:

context = {
    "session_id": str,
    "user_id": str,
    "user_context": str,  # 500-token user persona summary
    "interaction_contexts": [  # List of interaction summary dicts
        {
            "summary": str,  # 50-token interaction summary
            "timestamp": str
        },
        ...
    ],
    "combined_context": str,  # Pre-formatted: "[User Context]\n...\n[Interaction Context #N]\n..."
    "preferences": dict,
    "active_tasks": list,
    "last_activity": str
}

Implementation Strategy

Priority Order

  1. Use combined_context first - Pre-formatted by Context Manager, most efficient
  2. Fallback to building from components - If combined_context not available
  3. Handle empty context gracefully - Informative messages when no context exists

Context Access Pattern

# Preferred pattern used across all agents:
if context:
    # Option 1: Use pre-formatted combined_context
    combined_context = context.get('combined_context', '')
    if combined_context:
        # Use combined_context directly
        context_info = combined_context
    
    # Option 2: Build from components
    else:
        user_context = context.get('user_context', '')
        interaction_contexts = context.get('interaction_contexts', [])
        # Build context_info from components

Testing Recommendations

Test Scenarios

  1. First Turn (No Context)

    • Verify agents handle empty context gracefully
    • Verify informative messages when no context available
  2. Second Turn (1 Interaction)

    • Verify agents access interaction_contexts[0]
    • Verify context appears in prompts
  3. Multiple Turns (3+ Interactions)

    • Verify agents use last N interaction contexts
    • Verify context accumulates correctly
  4. With User Persona (20+ Interactions)

    • Verify user_context appears in prompts
    • Verify combined_context includes user context

Expected Behavior

Turn Intent Agent Sees Synthesis Agent Sees Safety Agent Sees Skills Agent Sees
1 "No previous context" Empty No context No context
2 Interaction #1 summary Interaction #1 Recent context Recent context
3+ Last 2 interactions All/Summarized interactions Recent context Recent context
20+ User context + interactions User context + interactions User context User context

Benefits

  1. Intent Recognition: Now context-aware, better accuracy for follow-up questions
  2. Response Synthesis: Uses conversation history for more relevant responses
  3. Safety Analysis: Context-aware appropriateness assessment
  4. Skills Identification: Considers conversation continuity for better skill matching
  5. Consistency: All agents use the same context structure
  6. Performance: Uses pre-formatted combined_context when available (more efficient)

Backward Compatibility

  • Synthesis agent includes _summarize_interactions() wrapper for backward compatibility
  • All changes are additive (enhancements) rather than breaking changes
  • Fallback logic handles missing or incomplete context gracefully

Files Modified

  1. src/agents/intent_agent.py - Fixed context access in _build_chain_of_thought_prompt()
  2. src/agents/synthesis_agent.py - Fixed _build_context_section() and related methods
  3. src/agents/safety_agent.py - Enhanced _build_safety_prompt() with context
  4. src/agents/skills_identification_agent.py - Enhanced _build_market_analysis_prompt() with context

Verification

✅ No linting errors
✅ All agents use correct context keys
✅ Backward compatibility maintained
✅ Graceful handling of empty context
✅ Consistent implementation pattern across all agents