LogicGoInfotechSpaces's picture
Refactor to use Hugging Face Inference API with fal-ai provider - Replace local model loading with InferenceClient API - Remove heavy SDXL/ControlNet/BLIP model dependencies - Use FLUX.1-Kontext-dev model via API - Keep FastAPI and Firebase authentication - Significantly reduce memory usage (no local models)
ae9bbd0
raw
history blame
15.9 kB
"""
FastAPI application for Text-Guided Image Colorization using Hugging Face Inference API
Uses fal-ai provider for memory-efficient inference
"""
import os
import io
import uuid
import logging
from pathlib import Path
from typing import Optional, Tuple
from fastapi import FastAPI, UploadFile, File, HTTPException, Depends, Request
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
import firebase_admin
from firebase_admin import credentials, app_check, auth as firebase_auth
from PIL import Image
import uvicorn
import gradio as gr
# Hugging Face Inference API
from huggingface_hub import InferenceClient
from app.config import settings
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Create writable directories
Path("/tmp/hf_cache").mkdir(parents=True, exist_ok=True)
Path("/tmp/matplotlib_config").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_uploads").mkdir(parents=True, exist_ok=True)
Path("/tmp/colorize_results").mkdir(parents=True, exist_ok=True)
# Initialize FastAPI app
app = FastAPI(
title="Text-Guided Image Colorization API",
description="Image colorization using SDXL + ControlNet with automatic captioning",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize Firebase Admin SDK
firebase_cred_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "/tmp/firebase-adminsdk.json")
if os.path.exists(firebase_cred_path):
try:
cred = credentials.Certificate(firebase_cred_path)
firebase_admin.initialize_app(cred)
logger.info("Firebase Admin SDK initialized")
except Exception as e:
logger.warning("Failed to initialize Firebase: %s", str(e))
try:
firebase_admin.initialize_app()
except:
pass
else:
logger.warning("Firebase credentials file not found. App Check will be disabled.")
try:
firebase_admin.initialize_app()
except:
pass
# Storage directories
UPLOAD_DIR = Path("/tmp/colorize_uploads")
RESULT_DIR = Path("/tmp/colorize_results")
# Mount static files
app.mount("/results", StaticFiles(directory=str(RESULT_DIR)), name="results")
app.mount("/uploads", StaticFiles(directory=str(UPLOAD_DIR)), name="uploads")
# Global Inference API client
inference_client = None
model_load_error: Optional[str] = None
# ========== Utility Functions ==========
def apply_color(image: Image.Image, color_map: Image.Image) -> Image.Image:
"""Apply color from color_map to image using LAB color space."""
# Convert to LAB color space
image_lab = image.convert('LAB')
color_map_lab = color_map.convert('LAB')
# Extract and merge LAB channels
l, _, _ = image_lab.split()
_, a_map, b_map = color_map_lab.split()
merged_lab = Image.merge('LAB', (l, a_map, b_map))
return merged_lab.convert('RGB')
def remove_unlikely_words(prompt: str) -> str:
"""Removes predefined unlikely phrases from prompt text."""
unlikely_words = []
a1 = [f'{i}s' for i in range(1900, 2000)]
a2 = [f'{i}' for i in range(1900, 2000)]
a3 = [f'year {i}' for i in range(1900, 2000)]
a4 = [f'circa {i}' for i in range(1900, 2000)]
b1 = [f"{y[0]} {y[1]} {y[2]} {y[3]} s" for y in a1]
b2 = [f"{y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
b3 = [f"year {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
b4 = [f"circa {y[0]} {y[1]} {y[2]} {y[3]}" for y in a1]
manual = [
"black and white,", "black and white", "black & white,", "black & white", "circa",
"balck and white,", "monochrome,", "black-and-white,", "black-and-white photography,",
"black - and - white photography,", "monochrome bw,", "black white,", "black an white,",
"grainy footage,", "grainy footage", "grainy photo,", "grainy photo", "b&w photo",
"back and white", "back and white,", "monochrome contrast", "monochrome", "grainy",
"grainy photograph,", "grainy photograph", "low contrast,", "low contrast", "b & w",
"grainy black-and-white photo,", "bw", "bw,", "grainy black-and-white photo",
"b & w,", "b&w,", "b&w!,", "b&w", "black - and - white,", "bw photo,", "grainy photo,",
"black-and-white photo,", "black-and-white photo", "black - and - white photography",
"b&w photo,", "monochromatic photo,", "grainy monochrome photo,", "monochromatic",
"blurry photo,", "blurry,", "blurry photography,", "monochromatic photo",
"black - and - white photograph,", "black - and - white photograph", "black on white,",
"black on white", "black-and-white", "historical image,", "historical picture,",
"historical photo,", "historical photograph,", "archival photo,", "taken in the early",
"taken in the late", "taken in the", "historic photograph,", "restored,", "restored",
"historical photo", "historical setting,",
"historic photo,", "historic", "desaturated!!,", "desaturated!,", "desaturated,", "desaturated",
"taken in", "shot on leica", "shot on leica sl2", "sl2",
"taken with a leica camera", "leica sl2", "leica", "setting",
"overcast day", "overcast weather", "slight overcast", "overcast",
"picture taken in", "photo taken in",
", photo", ", photo", ", photo", ", photo", ", photograph",
",,", ",,,", ",,,,", " ,", " ,", " ,", " ,",
]
unlikely_words.extend(a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4 + manual)
for word in unlikely_words:
prompt = prompt.replace(word, "")
return prompt
# ========== Model Loading ==========
@app.on_event("startup")
async def startup_event():
"""Initialize Hugging Face Inference API client"""
global inference_client, model_load_error
try:
logger.info("🔄 Initializing Hugging Face Inference API client...")
# Get HF token from environment or settings
hf_token = os.getenv("HF_TOKEN") or settings.HF_TOKEN
if not hf_token:
raise ValueError("HF_TOKEN environment variable is required for Inference API")
# Initialize InferenceClient with fal-ai provider
inference_client = InferenceClient(
provider="fal-ai",
api_key=hf_token,
)
logger.info("✅ Inference API client initialized successfully!")
model_load_error = None
except Exception as e:
error_msg = str(e)
logger.error(f"❌ Failed to initialize Inference API client: {error_msg}")
model_load_error = error_msg
# Don't raise - allow health check to work
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup on shutdown"""
global inference_client
if inference_client:
inference_client = None
logger.info("Application shutdown")
# ========== Authentication ==========
def _extract_bearer_token(authorization_header: str | None) -> str | None:
if not authorization_header:
return None
parts = authorization_header.split(" ", 1)
if len(parts) == 2 and parts[0].lower() == "bearer":
return parts[1].strip()
return None
async def verify_request(request: Request):
"""Verify Firebase authentication"""
if not firebase_admin._apps or os.getenv("DISABLE_AUTH", "false").lower() == "true":
return True
bearer = _extract_bearer_token(request.headers.get("Authorization"))
if bearer:
try:
decoded = firebase_auth.verify_id_token(bearer)
request.state.user = decoded
logger.info("Firebase Auth id_token verified for uid: %s", decoded.get("uid"))
return True
except Exception as e:
logger.warning("Auth token verification failed: %s", str(e))
if settings.ENABLE_APP_CHECK:
app_check_token = request.headers.get("X-Firebase-AppCheck")
if not app_check_token:
raise HTTPException(status_code=401, detail="Missing App Check token")
try:
app_check_claims = app_check.verify_token(app_check_token)
logger.info("App Check token verified for: %s", app_check_claims.get("app_id"))
return True
except Exception as e:
logger.warning("App Check token verification failed: %s", str(e))
raise HTTPException(status_code=401, detail="Invalid App Check token")
return True
# ========== API Endpoints ==========
@app.get("/api")
async def api_info():
"""API info endpoint"""
return {
"app": "Text-Guided Image Colorization API",
"version": "1.0.0",
"health": "/health",
"colorize": "/colorize",
"gradio": "/"
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
response = {
"status": "healthy",
"model_loaded": inference_client is not None,
"model_type": "hf_inference_api",
"provider": "fal-ai"
}
if model_load_error:
response["model_error"] = model_load_error
return response
def colorize_image_sdxl(
image: Image.Image,
positive_prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
seed: int = 123,
num_inference_steps: int = 8
) -> Tuple[Image.Image, str]:
"""
Colorize a grayscale or low-color image using Hugging Face Inference API.
Args:
image: PIL Image to colorize
positive_prompt: Additional descriptive text to enhance the caption
negative_prompt: Words or phrases to avoid during generation
seed: Random seed for reproducible generation
num_inference_steps: Number of inference steps
Returns:
Tuple of (colorized PIL Image, caption string)
"""
if inference_client is None:
raise RuntimeError("Inference API client not initialized")
original_size = image.size
# Resize to 512x512 for inference (FLUX models work well at this size)
control_image = image.convert("RGB").resize((512, 512))
# Convert image to bytes for API
img_bytes = io.BytesIO()
control_image.save(img_bytes, format="PNG")
img_bytes.seek(0)
input_image = img_bytes.read()
# Construct prompt
base_prompt = positive_prompt or "colorize this image with vibrant natural colors, high quality"
if negative_prompt:
# Note: Some models may not support negative_prompt directly
final_prompt = f"{base_prompt}. Avoid: {negative_prompt}"
else:
final_prompt = base_prompt
# Use Inference API for image-to-image generation
model_name = settings.INFERENCE_MODEL
logger.info(f"Calling Inference API with model {model_name}, prompt: {final_prompt}")
try:
result_image = inference_client.image_to_image(
input_image,
prompt=final_prompt,
model=model_name,
)
# Resize back to original size
if isinstance(result_image, Image.Image):
colorized = result_image.resize(original_size)
else:
# If it's bytes, convert to PIL Image
colorized = Image.open(io.BytesIO(result_image)).resize(original_size)
# Generate a simple caption from the prompt
caption = final_prompt[:100] # Truncate for display
return colorized, caption
except Exception as e:
logger.error(f"Inference API error: {e}")
raise RuntimeError(f"Failed to colorize image: {str(e)}")
@app.post("/colorize")
async def colorize_api(
file: UploadFile = File(...),
positive_prompt: Optional[str] = None,
negative_prompt: Optional[str] = None,
seed: int = 123,
num_inference_steps: int = 8,
verified: bool = Depends(verify_request)
):
"""
Upload a grayscale image -> returns colorized image.
Uses SDXL + ControlNet with automatic captioning.
"""
if inference_client is None:
raise HTTPException(status_code=503, detail="Inference API client not initialized")
if not file.content_type or not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
try:
img_bytes = await file.read()
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
logger.info("Colorizing image with SDXL + ControlNet...")
colorized, caption = colorize_image_sdxl(
image,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=seed,
num_inference_steps=num_inference_steps
)
output_filename = f"{uuid.uuid4()}.png"
output_path = RESULT_DIR / output_filename
colorized.save(output_path, "PNG")
logger.info("Colorized image saved: %s", output_filename)
return JSONResponse({
"success": True,
"result_id": output_filename.replace(".png", ""),
"caption": caption,
"download_url": f"/results/{output_filename}",
"api_download": f"/download/{output_filename.replace('.png', '')}"
})
except Exception as e:
logger.error("Error colorizing image: %s", str(e))
raise HTTPException(status_code=500, detail=f"Error colorizing image: {str(e)}")
@app.get("/download/{file_id}")
def download_result(file_id: str, verified: bool = Depends(verify_request)):
"""Download colorized image by file ID"""
filename = f"{file_id}.png"
path = RESULT_DIR / filename
if not path.exists():
raise HTTPException(status_code=404, detail="Result not found")
return FileResponse(path, media_type="image/png")
@app.get("/results/{filename}")
def get_result(filename: str):
"""Public endpoint to access colorized images"""
path = RESULT_DIR / filename
if not path.exists():
raise HTTPException(status_code=404, detail="Result not found")
return FileResponse(path, media_type="image/png")
# ========== Gradio Interface (Optional) ==========
def gradio_colorize(image, positive_prompt=None, negative_prompt=None, seed=123):
"""Gradio colorization function"""
if image is None:
return None, ""
try:
if inference_client is None:
return None, "Inference API client not initialized"
colorized, caption = colorize_image_sdxl(
image,
positive_prompt=positive_prompt,
negative_prompt=negative_prompt,
seed=seed
)
return colorized, caption
except Exception as e:
logger.error("Gradio colorization error: %s", str(e))
return None, str(e)
title = "🎨 Text-Guided Image Colorization"
description = "Upload a grayscale image and generate a color version using Hugging Face Inference API (fal-ai provider)."
iface = gr.Interface(
fn=gradio_colorize,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Positive Prompt", placeholder="Enter details to enhance the caption"),
gr.Textbox(label="Negative Prompt", value=settings.NEGATIVE_PROMPT),
gr.Slider(0, 1000, 123, label="Seed")
],
outputs=[
gr.Image(type="pil", label="Colorized Image"),
gr.Textbox(label="Caption", show_copy_button=True)
],
title=title,
description=description,
)
# Mount Gradio app at root
app = gr.mount_gradio_app(app, iface, path="/")
# ========== Run Server ==========
if __name__ == "__main__":
port = int(os.getenv("PORT", "7860"))
uvicorn.run(app, host="0.0.0.0", port=port)