Spaces:
Running
Running
File size: 13,443 Bytes
0da087b 8e33e20 85b6df3 8e33e20 0da087b 85b6df3 074b3bc 8d2927f 8e33e20 b0da11a 0da087b 8d2927f 85b6df3 0da087b 8d2927f 85b6df3 0da087b 8e33e20 751a8df 8e33e20 edbc931 8e33e20 751a8df edbc931 751a8df edbc931 751a8df 8e33e20 751a8df 8e33e20 751a8df 8e33e20 751a8df 8e33e20 0da087b b0da11a 8e33e20 0da087b 8e33e20 0da087b b0da11a 8e33e20 0da087b b0da11a 0da087b b0da11a 0da087b b0da11a 8e33e20 0da087b b0da11a 8e33e20 85b6df3 8e33e20 0da087b 8e33e20 0da087b 074b3bc b0da11a 0da087b b0da11a 8e33e20 b0da11a 8e33e20 b0da11a 8e33e20 b0da11a 0da087b 074b3bc 664b802 0da087b b0da11a 85b6df3 0da087b 8e33e20 0da087b 8e33e20 0da087b 85b6df3 8e33e20 85b6df3 0da087b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import json
import torch
import requests
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
MODEL_NAME = os.getenv('MODEL_ID')
TOKEN = os.getenv('TOKEN')
MCP_URL = "https://beyoru-clone-tools.hf.space/gradio_api/mcp/"
print("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True, token=TOKEN)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
token=TOKEN
)
print("Model loaded.")
# Define MCP tools schema
TOOLS = [
{
"type": "function",
"function": {
"name": "clone_tools_Web_Search",
"description": "Run a DuckDuckGo-backed search across text, news, images, videos, or books.",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query"},
"max_results": {"type": "number", "description": "Number of results to return (1-20)", "default": 5},
"search_type": {"type": "string", "enum": ["text", "news", "images", "videos", "books"], "default": "text"}
},
"required": ["query"]
}
}
},
{
"type": "function",
"function": {
"name": "clone_tools_Web_Fetch",
"description": "Fetch a webpage and return clean Markdown, raw HTML, or a list of links.",
"parameters": {
"type": "object",
"properties": {
"url": {"type": "string", "description": "The absolute URL to fetch"},
"max_chars": {"type": "number", "description": "Maximum characters to return (0 = no limit)", "default": 0},
"mode": {"type": "string", "enum": ["markdown", "html", "url_scraper"], "default": "markdown"}
},
"required": ["url"]
}
}
},
{
"type": "function",
"function": {
"name": "clone_tools_Code_Interpreter",
"description": "Execute Python code and return the output.",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string", "description": "Python source code to run"}
},
"required": ["code"]
}
}
},
{
"type": "function",
"function": {
"name": "clone_tools_Generate_Image",
"description": "Generate an image from a text prompt via Hugging Face inference.",
"parameters": {
"type": "object",
"properties": {
"prompt": {"type": "string", "description": "Text description of the image to generate"},
"model_id": {"type": "string", "default": "black-forest-labs/FLUX.1-dev"},
"steps": {"type": "number", "default": 30},
"width": {"type": "number", "default": 1024},
"height": {"type": "number", "default": 1024}
},
"required": ["prompt"]
}
}
}
]
def call_mcp_tool(tool_name, parameters, timeout=60):
"""
Call MCP tool via Streamable HTTP (SSE).
Extracts JSON responses from 'data:' events.
Returns parsed JSON dict.
"""
try:
payload = {
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": tool_name,
"arguments": parameters
}
}
response = requests.post(
MCP_URL,
json=payload,
headers={
"Content-Type": "application/json",
"Accept": "application/json, text/event-stream"
},
timeout=timeout,
stream=False
)
if response.status_code != 200:
return {"error": f"HTTP {response.status_code}: {response.text}"}
# Parse SSE chunks
data_events = []
for line in response.text.splitlines():
line = line.strip()
if line.startswith("data:"):
json_str = line.replace("data:", "").strip()
try:
data_events.append(json.loads(json_str))
except json.JSONDecodeError:
pass # skip invalid chunks
if not data_events:
return {"error": "No valid JSON data events found in SSE response"}
# Return the final event (most tools return a single event)
final_result = data_events[-1]
# Extract content from result
if "result" in final_result:
result = final_result["result"]
# Extract text content if available
if isinstance(result, dict) and "content" in result:
content = result["content"]
if isinstance(content, list) and len(content) > 0:
if content[0].get("type") == "text":
return {"output": content[0].get("text", "")}
return result
return final_result
except requests.exceptions.Timeout:
return {"error": "Request timeout"}
except Exception as e:
return {"error": f"MCP call failed: {str(e)}"}
def process_tool_calls(tool_calls):
"""Process tool calls and return results"""
results = []
for tool_call in tool_calls:
if isinstance(tool_call, dict):
func_name = tool_call.get("name")
func_args = tool_call.get("arguments", {})
if isinstance(func_args, str):
try:
func_args = json.loads(func_args)
except:
pass
result = call_mcp_tool(func_name, func_args)
# Format result for display
result_text = ""
if "error" in result:
result_text = f"❌ Error: {result['error']}"
elif "output" in result:
result_text = result["output"]
else:
result_text = json.dumps(result, ensure_ascii=False, indent=2)
results.append({
"tool_call_id": tool_call.get("id", "call_0"),
"role": "tool",
"name": func_name,
"content": result_text
})
return results
def playground(
message,
history,
system_prompt,
enable_tools,
max_new_tokens,
temperature,
repetition_penalty,
top_k,
top_p,
max_tool_iterations
):
if not isinstance(message, str) or not message.strip():
yield ""
return
# Build conversation
conversation = []
if system_prompt and system_prompt.strip():
conversation.append({"role": "system", "content": system_prompt.strip()})
for user_msg, bot_msg in history:
conversation.append({"role": "user", "content": user_msg})
if bot_msg:
conversation.append({"role": "assistant", "content": bot_msg})
conversation.append({"role": "user", "content": message})
# Tool calling loop
iteration = 0
generated_text = ""
while iteration < max_tool_iterations:
iteration += 1
# Apply chat template with tools if enabled
if enable_tools and hasattr(tokenizer, "apply_chat_template"):
prompt = tokenizer.apply_chat_template(
conversation,
tools=TOOLS,
tokenize=False,
add_generation_prompt=True
)
else:
prompt = tokenizer.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_k=int(top_k) if top_k > 0 else None,
top_p=float(top_p),
repetition_penalty=float(repetition_penalty),
do_sample=True if temperature > 0 else False,
pad_token_id=tokenizer.eos_token_id
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
current_output = ""
for new_text in streamer:
current_output += new_text
generated_text = current_output
yield generated_text
thread.join()
# Check for tool calls
tool_calls = None
try:
# Try to parse tool calls from output
if "<tool_call>" in current_output:
# Extract tool call JSON
import re
tool_match = re.search(r'<tool_call>(.*?)</tool_call>', current_output, re.DOTALL)
if tool_match:
tool_calls = json.loads(tool_match.group(1))
except:
pass
if not enable_tools or not tool_calls:
# No tool calls, return final response
break
# Process tool calls
generated_text += "\n\n🔧 **Executing tools...**\n"
yield generated_text
tool_results = process_tool_calls(tool_calls if isinstance(tool_calls, list) else [tool_calls])
# Add assistant message with tool calls
conversation.append({
"role": "assistant",
"content": current_output,
"tool_calls": tool_calls if isinstance(tool_calls, list) else [tool_calls]
})
# Add tool results
for result in tool_results:
conversation.append(result)
generated_text += f"\n✓ {result['name']}: {result['content'][:200]}...\n"
yield generated_text
generated_text += "\n**Processing results...**\n\n"
yield generated_text
# Continue conversation with tool results
# Reset generated_text for next iteration
generated_text = ""
with gr.Blocks(fill_height=True, fill_width=True) as app:
with gr.Sidebar():
gr.Markdown("## Playground with MCP Tools")
gr.HTML("""
Runs <b><a href="https://huggingface.co/beyoru/Qwen3-0.9B-A0.6B" target="_blank">
beyoru/Qwen3-0.9B-A0.6B</a></b> with <b>MCP Tools Integration</b>.<br><br>
<b>Support me at:</b><br><br>
<a href="https://www.buymeacoffee.com/ductransa0g" target="_blank">
<img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" width="150px">
</a>
""")
gr.Markdown("---")
gr.Markdown("## Tools Settings")
enable_tools = gr.Checkbox(
label="Enable MCP Tools",
value=True,
info="Allow model to call external tools (search, code, images)"
)
max_tool_iterations = gr.Slider(
1, 5, value=3, step=1,
label="Max Tool Iterations",
info="Maximum number of tool calling rounds"
)
gr.Markdown("---")
gr.Markdown("## System Prompt")
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter custom system instructions...",
lines=4,
value="You are a helpful AI assistant with access to tools for web search, code execution, and image generation. Use tools when needed to provide accurate and helpful responses.",
info="AI role and behavior"
)
gr.Markdown("---")
gr.Markdown("## Generation Parameters")
max_new_tokens = gr.Slider(32, 4096, value=2048, step=32, label="Max New Tokens")
temperature = gr.Slider(0.1, 2.0, value=0.6, step=0.1, label="Temperature")
repetition_penalty = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Repetition Penalty")
top_k = gr.Slider(0, 100, value=20, step=1, label="Top K (0 = off)")
top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.05, label="Top P")
gr.ChatInterface(
fn=playground,
additional_inputs=[
system_prompt,
enable_tools,
max_new_tokens,
temperature,
repetition_penalty,
top_k,
top_p,
max_tool_iterations
],
chatbot=gr.Chatbot(
label="Qwen3-0.9B-A0.6B with MCP Tools",
show_copy_button=True,
allow_tags=["think"],
),
examples=[
["Search for the latest news about AI"],
["Calculate the fibonacci sequence up to 10 using code"],
["Generate an image of a cute robot"],
["What's the weather like today?"]
],
cache_examples=False,
show_api=False
)
app.launch(server_name="0.0.0.0", pwa=True) |