physctrl / libs /das /models /pipelines.py
chenwang's picture
update
cd8c152
import os
import sys
import math
from tqdm import tqdm
from PIL import Image, ImageDraw
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# try:
# sys.path.append(os.path.join(project_root, "submodules/MoGe"))
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# except:
# print("Warning: MoGe not found, motion transfer will not be applied")
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from diffusers import CogVideoXDPMScheduler
from diffusers.utils import export_to_video, load_image, load_video
# from models.spatracker.predictor import SpaTrackerPredictor
# from models.spatracker.utils.visualizer import Visualizer
from models.cogvideox_tracking import CogVideoXImageToVideoPipelineTracking
# from submodules.MoGe.moge.model import MoGeModel
from image_gen_aux import DepthPreprocessor
from moviepy.editor import ImageSequenceClip
from typing import Any, Dict, Optional, Tuple, Union, List, Callable
class DiffusionAsShaderPipeline:
def __init__(self, gpu_id=0, output_dir='outputs'):
"""Initialize MotionTransfer class
Args:
gpu_id (int): GPU device ID
output_dir (str): Output directory path
"""
# video parameters
self.max_depth = 65.0
self.fps = 8
# camera parameters
self.camera_motion=None
self.fov=55
# device
self.device = f"cuda"
# files
self.output_dir = output_dir
os.makedirs(output_dir, exist_ok=True)
# Initialize transform
self.transform = transforms.Compose([
transforms.Resize((480, 720)),
transforms.ToTensor()
])
@torch.no_grad()
def _infer(
self,
prompt: str,
model_path: str,
tracking_tensor: torch.Tensor = None,
image_tensor: torch.Tensor = None, # [C,H,W] in range [0,1]
output_path: str = "./output.mp4",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
fps: int = 24,
seed: int = 0,
coarse_video: Optional[torch.Tensor] = None,
start_noise_t: Optional[int] = 10
):
"""
Generates a video based on the given prompt and saves it to the specified path.
Parameters:
- prompt (str): The description of the video to be generated.
- model_path (str): The path of the pre-trained model to be used.
- tracking_tensor (torch.Tensor): Tracking video tensor [T, C, H, W] in range [0,1]
- image_tensor (torch.Tensor): Input image tensor [C, H, W] in range [0,1]
- output_path (str): The path where the generated video will be saved.
- num_inference_steps (int): Number of steps for the inference process.
- guidance_scale (float): The scale for classifier-free guidance.
- num_videos_per_prompt (int): Number of videos to generate per prompt.
- dtype (torch.dtype): The data type for computation.
- seed (int): The seed for reproducibility.
"""
pipe = CogVideoXImageToVideoPipelineTracking.from_pretrained(model_path, torch_dtype=dtype)
# Convert tensor to PIL Image
image_np = (image_tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
image = Image.fromarray(image_np)
height, width = image.height, image.width
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
# Process tracking tensor
tracking_maps = tracking_tensor.float() # [T, C, H, W]
tracking_maps = tracking_maps.to(device=self.device, dtype=dtype)
tracking_first_frame = tracking_maps[0:1] # Get first frame as [1, C, H, W]
height, width = tracking_first_frame.shape[2], tracking_first_frame.shape[3]
if coarse_video is not None:
coarse_video = coarse_video.to(device=self.device, dtype=dtype).unsqueeze(0).permute(0, 2, 1, 3, 4)
# 2. Set Scheduler.
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.to(self.device, dtype=dtype)
# pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.transformer.eval()
pipe.text_encoder.eval()
pipe.vae.eval()
pipe.transformer.gradient_checkpointing = False
print("Encoding tracking maps")
tracking_maps = tracking_maps.unsqueeze(0) # [B, T, C, H, W]
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, C, T, H, W]
tracking_latent_dist = pipe.vae.encode(tracking_maps).latent_dist
tracking_maps = tracking_latent_dist.sample() * pipe.vae.config.scaling_factor
tracking_maps = tracking_maps.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
# 4. Generate the video frames based on the prompt.
video_generate = pipe(
prompt=prompt,
negative_prompt="The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion.",
image=image,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
tracking_maps=tracking_maps,
tracking_image=tracking_first_frame,
height=height,
width=width,
coarse_video=coarse_video,
start_noise_t=start_noise_t
).frames[0]
# 5. Export the generated frames to a video file. fps must be 8 for original video.
output_path = output_path if output_path else f"result.mp4"
os.makedirs(os.path.dirname(output_path), exist_ok=True)
export_to_video(video_generate, output_path, fps=fps)
#========== camera parameters ==========#
def _set_camera_motion(self, camera_motion):
self.camera_motion = camera_motion
def _get_intr(self, fov, H=480, W=720):
fov_rad = math.radians(fov)
focal_length = (W / 2) / math.tan(fov_rad / 2)
cx = W / 2
cy = H / 2
intr = torch.tensor([
[focal_length, 0, cx],
[0, focal_length, cy],
[0, 0, 1]
], dtype=torch.float32)
return intr
def _apply_poses(self, pts, intr, poses):
"""
Args:
pts (torch.Tensor): pointclouds coordinates [T, N, 3]
intr (torch.Tensor): camera intrinsics [T, 3, 3]
poses (numpy.ndarray): camera poses [T, 4, 4]
"""
poses = torch.from_numpy(poses).float().to(self.device)
T, N, _ = pts.shape
ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float)
pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1) # (T, N, 3)
pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2)) # (T, N, 3)
pts_cam[:,:, :3] /= pts[:, :, 2:3]
# to homogeneous
pts_cam = torch.cat([pts_cam, ones], dim=-1) # (T, N, 4)
if poses.shape[0] == 1:
poses = poses.repeat(T, 1, 1)
elif poses.shape[0] != T:
raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})")
pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3] # (T, N, 3)
pts_proj = torch.bmm(pts_world, intr.transpose(1, 2)) # (T, N, 3)
pts_proj[:, :, :2] /= pts_proj[:, :, 2:3]
return pts_proj
def apply_traj_on_tracking(self, pred_tracks, camera_motion=None, fov=55, frame_num=49):
intr = self._get_intr(fov).unsqueeze(0).repeat(frame_num, 1, 1).to(self.device)
tracking_pts = self._apply_poses(pred_tracks.squeeze(), intr, camera_motion).unsqueeze(0)
return tracking_pts
##============= SpatialTracker =============##
def generate_tracking_spatracker(self, video_tensor, density=70):
"""Generate tracking video
Args:
video_tensor (torch.Tensor): Input video tensor
Returns:
str: Path to tracking video
"""
print("Loading tracking models...")
# Load tracking model
tracker = SpaTrackerPredictor(
checkpoint=os.path.join(project_root, 'checkpoints/spaT_final.pth'),
interp_shape=(384, 576),
seq_length=12
).to(self.device)
# Load depth model
self.depth_preprocessor = DepthPreprocessor.from_pretrained("Intel/zoedepth-nyu-kitti")
self.depth_preprocessor.to(self.device)
try:
video = video_tensor.unsqueeze(0).to(self.device)
video_depths = []
for i in range(video_tensor.shape[0]):
frame = (video_tensor[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
depth = self.depth_preprocessor(Image.fromarray(frame))[0]
depth_tensor = transforms.ToTensor()(depth) # [1, H, W]
video_depths.append(depth_tensor)
video_depth = torch.stack(video_depths, dim=0).to(self.device)
# print("Video depth shape:", video_depth.shape)
segm_mask = np.ones((480, 720), dtype=np.uint8)
pred_tracks, pred_visibility, T_Firsts = tracker(
video * 255,
video_depth=video_depth,
grid_size=density,
backward_tracking=False,
depth_predictor=None,
grid_query_frame=0,
segm_mask=torch.from_numpy(segm_mask)[None, None].to(self.device),
wind_length=12,
progressive_tracking=False
)
return pred_tracks, pred_visibility, T_Firsts
finally:
# Clean up GPU memory
del tracker, self.depth_preprocessor
torch.cuda.empty_cache()
def visualize_tracking_spatracker(self, video, pred_tracks, pred_visibility, T_Firsts, save_tracking=True):
video = video.unsqueeze(0).to(self.device)
vis = Visualizer(save_dir=self.output_dir, grayscale=False, fps=24, pad_value=0)
msk_query = (T_Firsts == 0)
pred_tracks = pred_tracks[:,:,msk_query.squeeze()]
pred_visibility = pred_visibility[:,:,msk_query.squeeze()]
tracking_video = vis.visualize(video=video, tracks=pred_tracks,
visibility=pred_visibility, save_video=False,
filename="temp")
tracking_video = tracking_video.squeeze(0) # [T, C, H, W]
wide_list = list(tracking_video.unbind(0))
wide_list = [wide.permute(1, 2, 0).cpu().numpy() for wide in wide_list]
clip = ImageSequenceClip(wide_list, fps=self.fps)
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video.mp4")
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
# Convert tracking_video back to tensor in range [0,1]
tracking_frames = np.array(list(clip.iter_frames())) / 255.0
tracking_video = torch.from_numpy(tracking_frames).permute(0, 3, 1, 2).float()
return tracking_path, tracking_video
##============= MoGe =============##
def valid_mask(self, pixels, W, H):
"""Check if pixels are within valid image bounds
Args:
pixels (numpy.ndarray): Pixel coordinates of shape [N, 2]
W (int): Image width
H (int): Image height
Returns:
numpy.ndarray: Boolean mask of valid pixels
"""
return ((pixels[:, 0] >= 0) & (pixels[:, 0] < W) & (pixels[:, 1] > 0) & \
(pixels[:, 1] < H))
def sort_points_by_depth(self, points, depths):
"""Sort points by depth values
Args:
points (numpy.ndarray): Points array of shape [N, 2]
depths (numpy.ndarray): Depth values of shape [N]
Returns:
tuple: (sorted_points, sorted_depths, sort_index)
"""
# Combine points and depths into a single array for sorting
combined = np.hstack((points, depths[:, None])) # Nx3 (points + depth)
# Sort by depth (last column) in descending order
sort_index = combined[:, -1].argsort()[::-1]
sorted_combined = combined[sort_index]
# Split back into points and depths
sorted_points = sorted_combined[:, :-1]
sorted_depths = sorted_combined[:, -1]
return sorted_points, sorted_depths, sort_index
def draw_rectangle(self, rgb, coord, side_length, color=(255, 0, 0)):
"""Draw a rectangle on the image
Args:
rgb (PIL.Image): Image to draw on
coord (tuple): Center coordinates (x, y)
side_length (int): Length of rectangle sides
color (tuple): RGB color tuple
"""
draw = ImageDraw.Draw(rgb)
# Calculate the bounding box of the rectangle
left_up_point = (coord[0] - side_length//2, coord[1] - side_length//2)
right_down_point = (coord[0] + side_length//2, coord[1] + side_length//2)
color = tuple(list(color))
draw.rectangle(
[left_up_point, right_down_point],
fill=tuple(color),
outline=tuple(color),
)
def visualize_tracking_moge(self, points, mask, save_tracking=True):
"""Visualize tracking results from MoGe model
Args:
points (numpy.ndarray): Points array of shape [T, H, W, 3]
mask (numpy.ndarray): Binary mask of shape [H, W]
save_tracking (bool): Whether to save tracking video
Returns:
tuple: (tracking_path, tracking_video)
- tracking_path (str): Path to saved tracking video, None if save_tracking is False
- tracking_video (torch.Tensor): Tracking visualization tensor of shape [T, C, H, W] in range [0,1]
"""
# Create color array
T, H, W, _ = points.shape
colors = np.zeros((H, W, 3), dtype=np.uint8)
# Set R channel - based on x coordinates (smaller on the left)
colors[:, :, 0] = np.tile(np.linspace(0, 255, W), (H, 1))
# Set G channel - based on y coordinates (smaller on the top)
colors[:, :, 1] = np.tile(np.linspace(0, 255, H), (W, 1)).T
# Set B channel - based on depth
z_values = points[0, :, :, 2] # get z values
inv_z = 1 / z_values # calculate 1/z
# Calculate 2% and 98% percentiles
p2 = np.percentile(inv_z, 2)
p98 = np.percentile(inv_z, 98)
# Normalize to [0,1] range
normalized_z = np.clip((inv_z - p2) / (p98 - p2), 0, 1)
colors[:, :, 2] = (normalized_z * 255).astype(np.uint8)
colors = colors.astype(np.uint8)
# colors = colors[mask]
# points = points * mask[None, :, :, None]
points = points.reshape(T, -1, 3)
colors = colors.reshape(-1, 3)
# Initialize list to store frames
frames = []
for i, pts_i in enumerate(tqdm(points)):
pixels, depths = pts_i[..., :2], pts_i[..., 2]
pixels[..., 0] = pixels[..., 0] * W
pixels[..., 1] = pixels[..., 1] * H
pixels = pixels.astype(int)
valid = self.valid_mask(pixels, W, H)
frame_rgb = colors[valid]
pixels = pixels[valid]
depths = depths[valid]
img = Image.fromarray(np.uint8(np.zeros([H, W, 3])), mode="RGB")
sorted_pixels, _, sort_index = self.sort_points_by_depth(pixels, depths)
step = 1
sorted_pixels = sorted_pixels[::step]
sorted_rgb = frame_rgb[sort_index][::step]
for j in range(sorted_pixels.shape[0]):
self.draw_rectangle(
img,
coord=(sorted_pixels[j, 0], sorted_pixels[j, 1]),
side_length=2,
color=sorted_rgb[j],
)
frames.append(np.array(img))
# Convert frames to video tensor in range [0,1]
tracking_video = torch.from_numpy(np.stack(frames)).permute(0, 3, 1, 2).float() / 255.0
tracking_path = None
if save_tracking:
try:
tracking_path = os.path.join(self.output_dir, "tracking_video_moge.mp4")
# Convert back to uint8 for saving
uint8_frames = [frame.astype(np.uint8) for frame in frames]
clip = ImageSequenceClip(uint8_frames, fps=self.fps)
clip.write_videofile(tracking_path, codec="libx264", fps=self.fps, logger=None)
print(f"Video saved to {tracking_path}")
except Exception as e:
print(f"Warning: Failed to save tracking video: {e}")
tracking_path = None
return tracking_path, tracking_video
def apply_tracking(self, video_tensor, fps=8, tracking_tensor=None, img_cond_tensor=None, prompt=None, checkpoint_path=None, coarse_video=None, start_noise_t=0, seed=0):
"""Generate final video with motion transfer
Args:
video_tensor (torch.Tensor): Input video tensor [T,C,H,W]
fps (float): Input video FPS
tracking_tensor (torch.Tensor): Tracking video tensor [T,C,H,W]
image_tensor (torch.Tensor): First frame tensor [C,H,W] to use for generation
prompt (str): Generation prompt
checkpoint_path (str): Path to model checkpoint
"""
self.fps = fps
# Use first frame if no image provided
if img_cond_tensor is None:
img_cond_tensor = video_tensor[0]
# Generate final video
final_output = os.path.join(os.path.abspath(self.output_dir), "result.mp4" if coarse_video is None else f"result_{start_noise_t}.mp4")
self._infer(
prompt=prompt,
model_path=checkpoint_path,
tracking_tensor=tracking_tensor,
image_tensor=img_cond_tensor,
output_path=final_output,
num_inference_steps=50,
guidance_scale=6.0,
dtype=torch.bfloat16,
fps=self.fps,
coarse_video=coarse_video,
start_noise_t=start_noise_t,
seed=seed
)
print(f"Final video generated successfully at: {final_output}")
def _set_object_motion(self, motion_type):
"""Set object motion type
Args:
motion_type (str): Motion direction ('up', 'down', 'left', 'right')
"""
self.object_motion = motion_type
class CameraMotionGenerator:
def __init__(self, motion_type, frame_num=49, H=480, W=720, fx=None, fy=None, fov=55, device='cuda'):
self.motion_type = motion_type
self.frame_num = frame_num
self.fov = fov
self.device = device
self.W = W
self.H = H
self.intr = torch.tensor([
[0, 0, W / 2],
[0, 0, H / 2],
[0, 0, 1]
], dtype=torch.float32, device=device)
# if fx, fy not provided
if not fx or not fy:
fov_rad = math.radians(fov)
fx = fy = (W / 2) / math.tan(fov_rad / 2)
self.intr[0, 0] = fx
self.intr[1, 1] = fy
def _apply_poses(self, pts, poses):
"""
Args:
pts (torch.Tensor): pointclouds coordinates [T, N, 3]
intr (torch.Tensor): camera intrinsics [T, 3, 3]
poses (numpy.ndarray): camera poses [T, 4, 4]
"""
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1).to(torch.float)
T, N, _ = pts.shape
ones = torch.ones(T, N, 1, device=self.device, dtype=torch.float)
pts_hom = torch.cat([pts[:, :, :2], ones], dim=-1) # (T, N, 3)
pts_cam = torch.bmm(pts_hom, torch.linalg.inv(intr).transpose(1, 2)) # (T, N, 3)
pts_cam[:,:, :3] *= pts[:, :, 2:3]
# to homogeneous
pts_cam = torch.cat([pts_cam, ones], dim=-1) # (T, N, 4)
if poses.shape[0] == 1:
poses = poses.repeat(T, 1, 1)
elif poses.shape[0] != T:
raise ValueError(f"Poses length ({poses.shape[0]}) must match sequence length ({T})")
poses = poses.to(torch.float).to(self.device)
pts_world = torch.bmm(pts_cam, poses.transpose(1, 2))[:, :, :3] # (T, N, 3)
pts_proj = torch.bmm(pts_world, intr.transpose(1, 2)) # (T, N, 3)
pts_proj[:, :, :2] /= pts_proj[:, :, 2:3]
return pts_proj
def w2s(self, pts, poses):
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
assert poses.shape[0] == self.frame_num
poses = poses.to(torch.float32).to(self.device)
T, N, _ = pts.shape # (T, N, 3)
intr = self.intr.unsqueeze(0).repeat(self.frame_num, 1, 1)
# Step 1: 扩展点的维度,使其变成 (T, N, 4),最后一维填充1 (齐次坐标)
ones = torch.ones((T, N, 1), device=self.device, dtype=pts.dtype)
points_world_h = torch.cat([pts, ones], dim=-1)
points_camera_h = torch.bmm(poses, points_world_h.permute(0, 2, 1))
points_camera = points_camera_h[:, :3, :].permute(0, 2, 1)
points_image_h = torch.bmm(points_camera, intr.permute(0, 2, 1))
uv = points_image_h[:, :, :2] / points_image_h[:, :, 2:3]
# Step 5: 提取深度 (Z) 并拼接
depth = points_camera[:, :, 2:3] # (T, N, 1)
uvd = torch.cat([uv, depth], dim=-1) # (T, N, 3)
return uvd # 屏幕坐标 + 深度 (T, N, 3)
def apply_motion_on_pts(self, pts, camera_motion):
tracking_pts = self._apply_poses(pts.squeeze(), camera_motion).unsqueeze(0)
return tracking_pts
def set_intr(self, K):
if isinstance(K, np.ndarray):
K = torch.from_numpy(K)
self.intr = K.to(self.device)
def rot_poses(self, angle, axis='y'):
"""
pts (torch.Tensor): [T, N, 3]
angle (int): angle of rotation (degree)
"""
angle_rad = math.radians(angle)
angles = torch.linspace(0, angle_rad, self.frame_num)
rot_mats = torch.zeros(self.frame_num, 4, 4)
for i, theta in enumerate(angles):
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
if axis == 'x':
rot_mats[i] = torch.tensor([
[1, 0, 0, 0],
[0, cos_theta, -sin_theta, 0],
[0, sin_theta, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'y':
rot_mats[i] = torch.tensor([
[cos_theta, 0, sin_theta, 0],
[0, 1, 0, 0],
[-sin_theta, 0, cos_theta, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
elif axis == 'z':
rot_mats[i] = torch.tensor([
[cos_theta, -sin_theta, 0, 0],
[sin_theta, cos_theta, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
], dtype=torch.float32)
else:
raise ValueError("Invalid axis value. Choose 'x', 'y', or 'z'.")
return rot_mats.to(self.device)
def trans_poses(self, dx, dy, dz):
"""
params:
- dx: float, displacement along x axis。
- dy: float, displacement along y axis。
- dz: float, displacement along z axis。
ret:
- matrices: torch.Tensor
"""
trans_mats = torch.eye(4).unsqueeze(0).repeat(self.frame_num, 1, 1) # (n, 4, 4)
delta_x = dx / (self.frame_num - 1)
delta_y = dy / (self.frame_num - 1)
delta_z = dz / (self.frame_num - 1)
for i in range(self.frame_num):
trans_mats[i, 0, 3] = i * delta_x
trans_mats[i, 1, 3] = i * delta_y
trans_mats[i, 2, 3] = i * delta_z
return trans_mats.to(self.device)
def _look_at(self, camera_position, target_position):
# look at direction
direction = target_position - camera_position
direction /= np.linalg.norm(direction)
# calculate rotation matrix
up = np.array([0, 1, 0])
right = np.cross(up, direction)
right /= np.linalg.norm(right)
up = np.cross(direction, right)
rotation_matrix = np.vstack([right, up, direction])
rotation_matrix = np.linalg.inv(rotation_matrix)
return rotation_matrix
def spiral_poses(self, radius, forward_ratio = 0.5, backward_ratio = 0.5, rotation_times = 0.1, look_at_times = 0.5):
"""Generate spiral camera poses
Args:
radius (float): Base radius of the spiral
forward_ratio (float): Scale factor for forward motion
backward_ratio (float): Scale factor for backward motion
rotation_times (float): Number of rotations to complete
look_at_times (float): Scale factor for look-at point distance
Returns:
torch.Tensor: Camera poses of shape [num_frames, 4, 4]
"""
# Generate spiral trajectory
t = np.linspace(0, 1, self.frame_num)
r = np.sin(np.pi * t) * radius * rotation_times
theta = 2 * np.pi * t
# Calculate camera positions
# Limit y motion for better floor/sky view
y = r * np.cos(theta) * 0.3
x = r * np.sin(theta)
z = -r
z[z < 0] *= forward_ratio
z[z > 0] *= backward_ratio
# Set look-at target
target_pos = np.array([0, 0, radius * look_at_times])
cam_pos = np.vstack([x, y, z]).T
cam_poses = []
for pos in cam_pos:
rot_mat = self._look_at(pos, target_pos)
trans_mat = np.eye(4)
trans_mat[:3, :3] = rot_mat
trans_mat[:3, 3] = pos
cam_poses.append(trans_mat[None])
camera_poses = np.concatenate(cam_poses, axis=0)
return torch.from_numpy(camera_poses).to(self.device)
def rot(self, pts, angle, axis):
"""
pts: torch.Tensor, (T, N, 2)
"""
rot_mats = self.rot_poses(angle, axis)
pts = self.apply_motion_on_pts(pts, rot_mats)
return pts
def trans(self, pts, dx, dy, dz):
if pts.shape[-1] != 3:
raise ValueError("points should be in the 3d coordinate.")
trans_mats = self.trans_poses(dx, dy, dz)
pts = self.apply_motion_on_pts(pts, trans_mats)
return pts
def spiral(self, pts, radius):
spiral_poses = self.spiral_poses(radius)
pts = self.apply_motion_on_pts(pts, spiral_poses)
return pts
def get_default_motion(self):
if self.motion_type == 'trans':
motion = self.trans_poses(0.1, 0, 0)
elif self.motion_type == 'spiral':
motion = self.spiral_poses(1)
elif self.motion_type == 'rot':
motion = self.rot_poses(-25, 'y')
else:
raise ValueError(f'camera_motion must be in [trans, spiral, rot], but get {self.motion_type}.')
return motion
class ObjectMotionGenerator:
def __init__(self, device="cuda:0"):
"""Initialize ObjectMotionGenerator
Args:
device (str): Device to run on
"""
self.device = device
self.num_frames = 49
def _get_points_in_mask(self, pred_tracks, mask):
"""Get points that fall within the mask in first frame
Args:
pred_tracks (torch.Tensor): [num_frames, num_points, 3]
mask (torch.Tensor): [H, W] binary mask
Returns:
torch.Tensor: Boolean mask of selected points [num_points]
"""
first_frame_points = pred_tracks[0] # [num_points, 3]
xy_points = first_frame_points[:, :2] # [num_points, 2]
# Convert xy coordinates to pixel indices
xy_pixels = xy_points.round().long() # Convert to integer pixel coordinates
# Clamp coordinates to valid range
xy_pixels[:, 0].clamp_(0, mask.shape[1] - 1) # x coordinates
xy_pixels[:, 1].clamp_(0, mask.shape[0] - 1) # y coordinates
# Get mask values at point locations
points_in_mask = mask[xy_pixels[:, 1], xy_pixels[:, 0]] # Index using y, x order
return points_in_mask
def generate_motion(self, mask, motion_type, distance, num_frames=49):
"""Generate motion dictionary for the given parameters
Args:
mask (torch.Tensor): [H, W] binary mask
motion_type (str): Motion direction ('up', 'down', 'left', 'right')
distance (float): Total distance to move
num_frames (int): Number of frames
Returns:
dict: Motion dictionary containing:
- mask (torch.Tensor): Binary mask
- motions (torch.Tensor): Per-frame motion vectors [num_frames, 4, 4]
"""
self.num_frames = num_frames
# Define motion template vectors
template = {
'up': torch.tensor([0, -1, 0]),
'down': torch.tensor([0, 1, 0]),
'left': torch.tensor([-1, 0, 0]),
'right': torch.tensor([1, 0, 0]),
'front': torch.tensor([0, 0, 1]),
'back': torch.tensor([0, 0, -1])
}
if motion_type not in template:
raise ValueError(f"Unknown motion type: {motion_type}")
# Move mask to device
mask = mask.to(self.device)
# Generate per-frame motion matrices
motions = []
base_vec = template[motion_type].to(self.device) * distance
for frame_idx in range(num_frames):
# Calculate interpolation factor (0 to 1)
t = frame_idx / (num_frames - 1)
# Create motion matrix for current frame
current_motion = torch.eye(4, device=self.device)
current_motion[:3, 3] = base_vec * t
motions.append(current_motion)
motions = torch.stack(motions) # [num_frames, 4, 4]
return {
'mask': mask,
'motions': motions
}
def apply_motion(self, pred_tracks, motion_dict, tracking_method="spatracker"):
"""Apply motion to selected points
Args:
pred_tracks (torch.Tensor): [num_frames, num_points, 3] for spatracker
or [T, H, W, 3] for moge
motion_dict (dict): Motion dictionary containing mask and motions
tracking_method (str): "spatracker" or "moge"
Returns:
torch.Tensor: Modified pred_tracks with same shape as input
"""
pred_tracks = pred_tracks.to(self.device).float()
if tracking_method == "moge":
T, H, W, _ = pred_tracks.shape
selected_mask = motion_dict['mask']
valid_selected = ~torch.any(torch.isnan(pred_tracks[0]), dim=2) & selected_mask
valid_selected = valid_selected.reshape([-1])
modified_tracks = pred_tracks.clone().reshape(T, -1, 3)
for frame_idx in range(self.num_frames):
motion_mat = motion_dict['motions'][frame_idx]
motion_mat[0, 3] /= W
motion_mat[1, 3] /= H
points = modified_tracks[frame_idx, valid_selected]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, valid_selected] = transformed_points[:, :3]
return modified_tracks
else:
points_in_mask = self._get_points_in_mask(pred_tracks, motion_dict['mask'])
modified_tracks = pred_tracks.clone()
for frame_idx in range(pred_tracks.shape[0]):
motion_mat = motion_dict['motions'][frame_idx]
points = modified_tracks[frame_idx, points_in_mask]
points_homo = torch.cat([points, torch.ones_like(points[:, :1])], dim=1)
transformed_points = torch.matmul(points_homo, motion_mat.T)
modified_tracks[frame_idx, points_in_mask] = transformed_points[:, :3]
return modified_tracks