Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 ByteDance Ltd. and/or its affiliates | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn as nn | |
| class CameraDec(nn.Module): | |
| def __init__(self, dim_in=1536): | |
| super().__init__() | |
| output_dim = dim_in | |
| self.backbone = nn.Sequential( | |
| nn.Linear(output_dim, output_dim), | |
| nn.ReLU(), | |
| nn.Linear(output_dim, output_dim), | |
| nn.ReLU(), | |
| ) | |
| self.fc_t = nn.Linear(output_dim, 3) | |
| self.fc_qvec = nn.Linear(output_dim, 4) | |
| self.fc_fov = nn.Sequential(nn.Linear(output_dim, 2), nn.ReLU()) | |
| def forward(self, feat, camera_encoding=None, *args, **kwargs): | |
| B, N = feat.shape[:2] | |
| feat = feat.reshape(B * N, -1) | |
| feat = self.backbone(feat) | |
| out_t = self.fc_t(feat.float()).reshape(B, N, 3) | |
| if camera_encoding is None: | |
| out_qvec = self.fc_qvec(feat.float()).reshape(B, N, 4) | |
| out_fov = self.fc_fov(feat.float()).reshape(B, N, 2) | |
| else: | |
| out_qvec = camera_encoding[..., 3:7] | |
| out_fov = camera_encoding[..., -2:] | |
| pose_enc = torch.cat([out_t, out_qvec, out_fov], dim=-1) | |
| return pose_enc | |