linhaotong
update
b9f87ab
# Copyright (c) 2025 ByteDance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
# -----------------------------------------------------------------------------
# Activation functions
# -----------------------------------------------------------------------------
def activate_head_gs(out, activation="norm_exp", conf_activation="expp1", conf_dim=None):
"""
Process network output to extract GS params and density values.
Density could be view-dependent as SH coefficient
Args:
out: Network output tensor (B, C, H, W)
activation: Activation type for 3D points
conf_activation: Activation type for confidence values
Returns:
Tuple of (3D points tensor, confidence tensor)
"""
# Move channels from last dim to the 4th dimension => (B, H, W, C)
fmap = out.permute(0, 2, 3, 1) # B,H,W,C expected
# Split into xyz (first C-1 channels) and confidence (last channel)
conf_dim = 1 if conf_dim is None else conf_dim
xyz = fmap[:, :, :, :-conf_dim]
conf = fmap[:, :, :, -1] if conf_dim == 1 else fmap[:, :, :, -conf_dim:]
if activation == "norm_exp":
d = xyz.norm(dim=-1, keepdim=True).clamp(min=1e-8)
xyz_normed = xyz / d
pts3d = xyz_normed * torch.expm1(d)
elif activation == "norm":
pts3d = xyz / xyz.norm(dim=-1, keepdim=True)
elif activation == "exp":
pts3d = torch.exp(xyz)
elif activation == "relu":
pts3d = F.relu(xyz)
elif activation == "sigmoid":
pts3d = torch.sigmoid(xyz)
elif activation == "linear":
pts3d = xyz
else:
raise ValueError(f"Unknown activation: {activation}")
if conf_activation == "expp1":
conf_out = 1 + conf.exp()
elif conf_activation == "expp0":
conf_out = conf.exp()
elif conf_activation == "sigmoid":
conf_out = torch.sigmoid(conf)
elif conf_activation == "linear":
conf_out = conf
else:
raise ValueError(f"Unknown conf_activation: {conf_activation}")
return pts3d, conf_out
# -----------------------------------------------------------------------------
# Other utilities
# -----------------------------------------------------------------------------
class Permute(nn.Module):
"""nn.Module wrapper around Tensor.permute for cleaner nn.Sequential usage."""
dims: Tuple[int, ...]
def __init__(self, dims: Tuple[int, ...]) -> None:
super().__init__()
self.dims = dims
def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore[override]
return x.permute(*self.dims)
def position_grid_to_embed(
pos_grid: torch.Tensor, embed_dim: int, omega_0: float = 100
) -> torch.Tensor:
"""
Convert 2D position grid (HxWx2) to sinusoidal embeddings (HxWxC)
Args:
pos_grid: Tensor of shape (H, W, 2) containing 2D coordinates
embed_dim: Output channel dimension for embeddings
Returns:
Tensor of shape (H, W, embed_dim) with positional embeddings
"""
H, W, grid_dim = pos_grid.shape
assert grid_dim == 2
pos_flat = pos_grid.reshape(-1, grid_dim) # Flatten to (H*W, 2)
# Process x and y coordinates separately
emb_x = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 0], omega_0=omega_0) # [1, H*W, D/2]
emb_y = make_sincos_pos_embed(embed_dim // 2, pos_flat[:, 1], omega_0=omega_0) # [1, H*W, D/2]
# Combine and reshape
emb = torch.cat([emb_x, emb_y], dim=-1) # [1, H*W, D]
return emb.view(H, W, embed_dim) # [H, W, D]
def make_sincos_pos_embed(embed_dim: int, pos: torch.Tensor, omega_0: float = 100) -> torch.Tensor:
"""
This function generates a 1D positional embedding from a given grid using sine and cosine functions. # noqa
Args:
- embed_dim: The embedding dimension.
- pos: The position to generate the embedding from.
Returns:
- emb: The generated 1D positional embedding.
"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.double, device=pos.device)
omega /= embed_dim / 2.0
omega = 1.0 / omega_0**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return emb.float()
# Inspired by https://github.com/microsoft/moge
def create_uv_grid(
width: int,
height: int,
aspect_ratio: float = None,
dtype: torch.dtype = None,
device: torch.device = None,
) -> torch.Tensor:
"""
Create a normalized UV grid of shape (width, height, 2).
The grid spans horizontally and vertically according to an aspect ratio,
ensuring the top-left corner is at (-x_span, -y_span) and the bottom-right
corner is at (x_span, y_span), normalized by the diagonal of the plane.
Args:
width (int): Number of points horizontally.
height (int): Number of points vertically.
aspect_ratio (float, optional): Width-to-height ratio. Defaults to width/height.
dtype (torch.dtype, optional): Data type of the resulting tensor.
device (torch.device, optional): Device on which the tensor is created.
Returns:
torch.Tensor: A (width, height, 2) tensor of UV coordinates.
"""
# Derive aspect ratio if not explicitly provided
if aspect_ratio is None:
aspect_ratio = float(width) / float(height)
# Compute normalized spans for X and Y
diag_factor = (aspect_ratio**2 + 1.0) ** 0.5
span_x = aspect_ratio / diag_factor
span_y = 1.0 / diag_factor
# Establish the linspace boundaries
left_x = -span_x * (width - 1) / width
right_x = span_x * (width - 1) / width
top_y = -span_y * (height - 1) / height
bottom_y = span_y * (height - 1) / height
# Generate 1D coordinates
x_coords = torch.linspace(left_x, right_x, steps=width, dtype=dtype, device=device)
y_coords = torch.linspace(top_y, bottom_y, steps=height, dtype=dtype, device=device)
# Create 2D meshgrid (width x height) and stack into UV
uu, vv = torch.meshgrid(x_coords, y_coords, indexing="xy")
uv_grid = torch.stack((uu, vv), dim=-1)
return uv_grid
# -----------------------------------------------------------------------------
# Interpolation (safe interpolation, avoid INT_MAX overflow)
# -----------------------------------------------------------------------------
def custom_interpolate(
x: torch.Tensor,
size: Union[Tuple[int, int], None] = None,
scale_factor: Union[float, None] = None,
mode: str = "bilinear",
align_corners: bool = True,
) -> torch.Tensor:
"""
Safe interpolation implementation to avoid INT_MAX overflow in torch.nn.functional.interpolate.
"""
if size is None:
assert scale_factor is not None, "Either size or scale_factor must be provided."
size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor))
INT_MAX = 1610612736
total = size[0] * size[1] * x.shape[0] * x.shape[1]
if total > INT_MAX:
chunks = torch.chunk(x, chunks=(total // INT_MAX) + 1, dim=0)
outs = [
nn.functional.interpolate(c, size=size, mode=mode, align_corners=align_corners)
for c in chunks
]
return torch.cat(outs, dim=0).contiguous()
return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners)