File size: 16,775 Bytes
6932b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#!/usr/bin/env python3
"""
Collect evaluation scores from trending models' model-index metadata.

Scans trending text-generation models on the Hub and extracts benchmark
scores from their model-index metadata or open pull requests.

Results are saved to a dataset for the evals leaderboard.

Usage:
    python collect_evals.py [--push-to-hub]
"""

from __future__ import annotations

import argparse
import json
import os
import re
from dataclasses import dataclass
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional

import requests
import yaml
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError

API_BASE = "https://huggingface.co/api"
PIPELINE_FILTER = "text-generation"
TRENDING_LIMIT = 50
TRENDING_FETCH_LIMIT = 100
PR_SCAN_LIMIT = 40
USER_AGENT = "skills-evals-leaderboard/0.3"


def _normalize(text: Optional[str]) -> str:
    if not text:
        return ""
    text = text.lower()
    text = re.sub(r"[^a-z0-9]+", " ", text)
    return text.strip()


def _coerce_score(value: Any) -> Optional[float]:
    if value is None:
        return None
    if isinstance(value, (int, float)):
        return float(value)
    if isinstance(value, str):
        candidate = value.strip()
        if candidate.endswith("%"):
            candidate = candidate[:-1]
        try:
            return float(candidate)
        except ValueError:
            return None
    return None


@dataclass(frozen=True)
class BenchmarkSpec:
    key: str
    label: str
    aliases: tuple[str, ...]

    def matches(self, fields: List[str]) -> bool:
        for alias in self.aliases:
            alias_norm = _normalize(alias)
            if not alias_norm:
                continue
            for field in fields:
                if alias_norm in field:
                    return True
        return False


BENCHMARKS: Dict[str, BenchmarkSpec] = {
    "mmlu": BenchmarkSpec(
        key="mmlu",
        label="MMLU",
        aliases=("mmlu", "massive multitask language understanding"),
    ),
    "bigcodebench": BenchmarkSpec(
        key="bigcodebench",
        label="BigCodeBench",
        aliases=("bigcodebench", "big code bench"),
    ),
    "arc_mc": BenchmarkSpec(
        key="arc_mc",
        label="ARC MC",
        aliases=(
            "arc mc",
            "arc-challenge",
            "arc challenge",
            "arc multiple choice",
            "arc c",
        ),
    ),
}


class EvalsCollector:
    """Collects evaluation scores from model-index metadata."""

    def __init__(self, token: str | None = None) -> None:
        self.token = token
        self.session = requests.Session()
        self.session.headers.update({"User-Agent": USER_AGENT})
        if token:
            self.session.headers.update({"Authorization": f"Bearer {token}"})
        self.logs: List[str] = []
        self.results: List[Dict[str, Any]] = []

    def log(self, message: str) -> None:
        """Add a log message."""
        print(message)
        self.logs.append(message)

    def collect_all(self) -> List[Dict[str, Any]]:
        """Collect evaluation scores from trending models."""
        self.log("πŸ” Fetching trending text-generation models...")
        trending = self._fetch_trending_models()

        for entry in trending:
            repo_id = entry.get("modelId") or entry.get("id")
            if not repo_id:
                continue
            scores = self._collect_scores(repo_id)
            if scores["scores"]:
                self.results.extend(self._format_scores(repo_id, scores["scores"]))

        self.log(f"βœ… Collected {len(self.results)} evaluation entries")
        return self.results

    def _fetch_trending_models(self) -> List[Dict[str, Any]]:
        params = {"sort": "trendingScore", "limit": TRENDING_FETCH_LIMIT}
        response = self.session.get(
            f"{API_BASE}/models",
            params=params,
            timeout=30,
        )
        response.raise_for_status()
        data = response.json()
        if not isinstance(data, list):
            raise ValueError("Unexpected trending response.")
        filtered = [
            model
            for model in data
            if (model.get("pipeline_tag") == PIPELINE_FILTER or PIPELINE_FILTER in (model.get("tags") or []))
        ]
        if not filtered:
            self.log("⚠️ No text-generation models in trending feed.")
            return []
        limited = filtered[:TRENDING_LIMIT]
        self.log(f"πŸ“Š Found {len(limited)} trending text-generation models")
        return limited

    def _collect_scores(self, repo_id: str) -> Dict[str, Any]:
        owner = repo_id.split("/")[0]
        card_meta = self._read_model_card(repo_id)
        model_index = card_meta.get("model-index")
        if model_index:
            self.log(f"βœ… {repo_id}: model card metadata found.")
            scores = self._extract_scores(
                repo_id=repo_id,
                model_index=model_index,
                contributor=owner,
                source_type="model-card",
                source_url=f"https://huggingface.co/{repo_id}",
                revision="main",
            )
            if scores:
                return {"model_id": repo_id, "scores": scores}

        prs = self._fetch_pull_requests(repo_id)
        for pr in prs:
            revision = f"refs/pr/{pr['num']}"
            pr_meta = self._read_model_card(repo_id, revision=revision)
            pr_index = pr_meta.get("model-index")
            if not pr_index:
                continue
            author_info = pr.get("author", {}) or {}
            contributor = author_info.get("name") or author_info.get("fullname") or "unknown-author"
            discussion_path = f"{repo_id}/discussions/{pr['num']}"
            source_url = f"https://huggingface.co/{discussion_path}"
            scores = self._extract_scores(
                repo_id=repo_id,
                model_index=pr_index,
                contributor=contributor,
                source_type="pull-request",
                source_url=source_url,
                revision=revision,
            )
            if scores:
                note = f"πŸ“ {repo_id}: PR #{pr['num']} by {contributor}."
                self.log(note)
                return {"model_id": repo_id, "scores": scores}

        self.log(f"⚠️ {repo_id}: no target benchmarks located.")
        return {"model_id": repo_id, "scores": {}}

    def _read_model_card(
        self,
        repo_id: str,
        revision: Optional[str] = None,
    ) -> Dict[str, Any]:
        try:
            path = hf_hub_download(
                repo_id=repo_id,
                filename="README.md",
                repo_type="model",
                revision=revision,
                token=self.token,
            )
        except HfHubHTTPError as err:
            ctx = f"{repo_id} ({revision or 'main'})"
            self.log(f"🚫 {ctx}: README download failed ({err}).")
            return {}
        text = Path(path).read_text(encoding="utf-8", errors="ignore")
        return self._parse_front_matter(text)

    @staticmethod
    def _parse_front_matter(content: str) -> Dict[str, Any]:
        content = content.lstrip("\ufeff")
        if not content.startswith("---"):
            return {}
        lines = content.splitlines()
        end_idx = None
        for idx, line in enumerate(lines[1:], start=1):
            if line.strip() == "---":
                end_idx = idx
                break
        if end_idx is None:
            return {}
        front_matter = "\n".join(lines[1:end_idx])
        try:
            data = yaml.safe_load(front_matter) or {}
            return data if isinstance(data, dict) else {}
        except yaml.YAMLError:
            return {}

    def _fetch_pull_requests(self, repo_id: str) -> List[Dict[str, Any]]:
        url = f"{API_BASE}/models/{repo_id}/discussions"
        try:
            response = self.session.get(
                url,
                params={"limit": PR_SCAN_LIMIT},
                timeout=30,
            )
            response.raise_for_status()
        except requests.RequestException as err:
            self.log(f"🚫 {repo_id}: PR list request failed ({err}).")
            return []

        payload = response.json()
        discussions = payload.get("discussions", [])
        prs = [disc for disc in discussions if disc.get("isPullRequest")]
        prs.sort(key=lambda item: item.get("createdAt", ""), reverse=True)
        if prs:
            self.log(f"πŸ“¬ {repo_id}: scanning {len(prs)} pull requests.")
        return prs

    def _extract_scores(
        self,
        repo_id: str,
        model_index: Any,
        contributor: str,
        source_type: str,
        source_url: str,
        revision: str,
    ) -> Dict[str, Dict[str, Any]]:
        if not isinstance(model_index, list):
            return {}
        scores: Dict[str, Dict[str, Any]] = {}
        for entry in model_index:
            if not isinstance(entry, dict):
                continue
            model_name = entry.get("name") or repo_id.split("/")[-1]
            for result in entry.get("results", []):
                dataset_info = result.get("dataset") or {}
                dataset_name = dataset_info.get("name")
                dataset_type = dataset_info.get("type")
                task_info = result.get("task") or {}
                task_type = task_info.get("type")
                for metric in result.get("metrics", []):
                    benchmark_key = self._match_benchmark(
                        dataset_name,
                        dataset_type,
                        metric,
                    )
                    if not benchmark_key:
                        continue
                    raw_value = metric.get("value")
                    value = _coerce_score(raw_value)
                    if value is None:
                        continue
                    unit = metric.get("unit") or ""
                    is_pct = isinstance(raw_value, str) and raw_value.strip().endswith("%")
                    if not unit and is_pct:
                        unit = "%"
                    metric_name = metric.get("name") or metric.get("type") or ""
                    payload = {
                        "model": repo_id,
                        "model_name": model_name,
                        "benchmark_key": benchmark_key,
                        "benchmark_label": BENCHMARKS[benchmark_key].label,
                        "value": value,
                        "unit": unit,
                        "dataset": dataset_name or dataset_type or "",
                        "task_type": task_type or "",
                        "metric_name": metric_name,
                        "contributor": contributor,
                        "source_type": source_type,
                        "source_url": source_url,
                        "revision": revision,
                    }
                    existing = scores.get(benchmark_key)
                    if not existing or value > existing["value"]:
                        scores[benchmark_key] = payload
        return scores

    def _match_benchmark(
        self,
        dataset_name: Optional[str],
        dataset_type: Optional[str],
        metric: Dict[str, Any],
    ) -> Optional[str]:
        fields = [
            _normalize(dataset_name),
            _normalize(dataset_type),
            _normalize(metric.get("name")),
            _normalize(metric.get("type")),
        ]
        fields = [field for field in fields if field]
        for key, spec in BENCHMARKS.items():
            if spec.matches(fields):
                return key
        return None

    def _format_scores(self, model_id: str, scores: Dict[str, Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Format scores as flat records for the dataset."""
        rows = []
        for benchmark_key, payload in scores.items():
            rows.append(
                {
                    "model_id": model_id,
                    "benchmark": payload["benchmark_label"],
                    "benchmark_key": benchmark_key,
                    "score": round(payload["value"], 2),
                    "source_type": payload["source_type"],
                    "source_url": payload["source_url"],
                    "contributor": payload["contributor"],
                    "collected_at": datetime.now(timezone.utc).isoformat(),
                }
            )
        return rows

    def get_leaderboard(self) -> List[Dict[str, Any]]:
        """Get results sorted by score descending."""
        return sorted(self.results, key=lambda x: x["score"], reverse=True)

    def save_json(self, filepath: str) -> None:
        """Save the leaderboard to a JSON file."""
        leaderboard = self.get_leaderboard()
        output = {
            "generated_at": datetime.now(timezone.utc).isoformat(),
            "total_entries": len(leaderboard),
            "benchmarks": list(BENCHMARKS.keys()),
            "leaderboard": leaderboard,
        }
        with open(filepath, "w") as f:
            json.dump(output, f, indent=2)
        self.log(f"πŸ’Ύ Saved leaderboard to {filepath}")

    def push_to_hub(self, repo_id: str = "hf-skills/evals-leaderboard") -> None:
        """Push the leaderboard data to a HF dataset."""
        try:
            from huggingface_hub import HfApi
        except ImportError:
            self.log("❌ huggingface_hub not installed. Run: pip install huggingface_hub")
            return

        api = HfApi(token=self.token)
        leaderboard = self.get_leaderboard()

        # Create dataset as JSONL
        jsonl_content = "\n".join(json.dumps(row) for row in leaderboard)

        # Create metadata file
        metadata = {
            "generated_at": datetime.now(timezone.utc).isoformat(),
            "total_entries": len(leaderboard),
            "models_with_scores": len(set(r["model_id"] for r in leaderboard)),
            "benchmarks": list(BENCHMARKS.keys()),
        }

        try:
            # Create repo if it doesn't exist
            api.create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True)
            self.log(f"πŸ“ Ensured dataset repo exists: {repo_id}")

            # Upload leaderboard data
            api.upload_file(
                path_or_fileobj=jsonl_content.encode(),
                path_in_repo="data/leaderboard.jsonl",
                repo_id=repo_id,
                repo_type="dataset",
                commit_message=f"Update leaderboard - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M')} UTC",
            )

            # Upload metadata
            api.upload_file(
                path_or_fileobj=json.dumps(metadata, indent=2).encode(),
                path_in_repo="data/metadata.json",
                repo_id=repo_id,
                repo_type="dataset",
                commit_message=f"Update metadata - {datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M')} UTC",
            )

            self.log(f"πŸš€ Pushed leaderboard to {repo_id}")
        except Exception as e:
            self.log(f"❌ Failed to push to hub: {e}")


def main() -> None:
    parser = argparse.ArgumentParser(description="Collect evaluation scores from model-index metadata")
    parser.add_argument(
        "--push-to-hub",
        action="store_true",
        help="Push results to HF dataset",
    )
    parser.add_argument(
        "--output",
        type=str,
        default="leaderboard.json",
        help="Output JSON file path",
    )
    parser.add_argument(
        "--repo-id",
        type=str,
        default="hf-skills/evals-leaderboard",
        help="HF dataset repo ID for pushing",
    )
    args = parser.parse_args()

    token = os.environ.get("HF_TOKEN")
    if not token:
        print("⚠️ No HF_TOKEN found. Some requests may be rate-limited.")

    collector = EvalsCollector(token=token)
    collector.collect_all()

    # Print leaderboard summary
    print("\n" + "=" * 60)
    print("πŸ“Š EVALUATION LEADERBOARD")
    print("=" * 60)

    leaderboard = collector.get_leaderboard()
    for entry in leaderboard[:20]:
        print(f"{entry['model_id']:40} | {entry['benchmark']:12} | {entry['score']:6.2f}")

    if len(leaderboard) > 20:
        print(f"   ... and {len(leaderboard) - 20} more entries")

    print("=" * 60)
    print(f"Total entries: {len(leaderboard)}")
    print(f"Models with scores: {len(set(r['model_id'] for r in leaderboard))}")

    # Save locally
    collector.save_json(args.output)

    # Push to hub if requested
    if args.push_to_hub:
        collector.push_to_hub(args.repo_id)


if __name__ == "__main__":
    main()