Spaces:
Sleeping
Sleeping
fix Phi-4 and DeepSeek Lite Chat by limiting max new tokens and max memory and optimizing pipeline creation
Browse files
app.py
CHANGED
|
@@ -177,25 +177,65 @@ def initialize_model_once(model_key):
|
|
| 177 |
# For Phi-4 specifically
|
| 178 |
elif "Phi-4" in model_key:
|
| 179 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
model_name,
|
| 182 |
device_map="cpu", # Force CPU explicitly
|
| 183 |
torch_dtype=torch.float32, # Use float32 for CPU
|
| 184 |
low_cpu_mem_usage=True,
|
| 185 |
-
trust_remote_code=True
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
MODEL_CACHE["is_gguf"] = False
|
| 188 |
|
| 189 |
# Special handling for DeepSeek Lite Chat
|
| 190 |
elif model_key == "DeepSeek Lite Chat":
|
| 191 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 192 |
-
|
|
|
|
|
|
|
| 193 |
model_name,
|
| 194 |
device_map="cpu", # Force CPU
|
| 195 |
torch_dtype=torch.float32, # Use float32 for CPU
|
| 196 |
low_cpu_mem_usage=True,
|
| 197 |
-
trust_remote_code=True
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
MODEL_CACHE["is_gguf"] = False
|
| 200 |
|
| 201 |
# Handle standard HF models
|
|
@@ -262,6 +302,36 @@ def get_fallback_model(current_model):
|
|
| 262 |
}
|
| 263 |
return fallback_map.get(current_model, "Llama 2 Chat")
|
| 264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
def create_llm_pipeline(model_key):
|
| 266 |
"""Create a new pipeline using the specified model with better error handling"""
|
| 267 |
try:
|
|
@@ -310,18 +380,8 @@ def create_llm_pipeline(model_key):
|
|
| 310 |
# Remove return_full_text parameter for T5 models
|
| 311 |
)
|
| 312 |
else:
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
"text-generation",
|
| 316 |
-
model=model,
|
| 317 |
-
tokenizer=tokenizer,
|
| 318 |
-
max_new_tokens=256, # Increased for more comprehensive answers
|
| 319 |
-
temperature=0.3,
|
| 320 |
-
top_p=0.9,
|
| 321 |
-
top_k=30,
|
| 322 |
-
repetition_penalty=1.2,
|
| 323 |
-
return_full_text=False,
|
| 324 |
-
)
|
| 325 |
|
| 326 |
print("Pipeline created successfully")
|
| 327 |
return HuggingFacePipeline(pipeline=pipe)
|
|
|
|
| 177 |
# For Phi-4 specifically
|
| 178 |
elif "Phi-4" in model_key:
|
| 179 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 180 |
+
# Load model with optimized memory
|
| 181 |
+
try:
|
| 182 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 183 |
model_name,
|
| 184 |
device_map="cpu", # Force CPU explicitly
|
| 185 |
torch_dtype=torch.float32, # Use float32 for CPU
|
| 186 |
low_cpu_mem_usage=True,
|
| 187 |
+
trust_remote_code=True,
|
| 188 |
+
offload_folder="model_offload",
|
| 189 |
+
offload_state_dict=True,
|
| 190 |
+
max_memory={"cpu": "1.7GiB"} # Limit memory usage
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"Error loading Phi-4 with full settings: {str(e)}")
|
| 195 |
+
print("Trying with minimal configuration...")
|
| 196 |
+
|
| 197 |
+
# Fallback with minimum configuration
|
| 198 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 199 |
+
model_name,
|
| 200 |
+
device_map="cpu",
|
| 201 |
+
torch_dtype=torch.float32,
|
| 202 |
+
trust_remote_code=True,
|
| 203 |
+
offload_folder="model_offload",
|
| 204 |
+
low_cpu_mem_usage=True
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
MODEL_CACHE["is_gguf"] = False
|
| 208 |
|
| 209 |
# Special handling for DeepSeek Lite Chat
|
| 210 |
elif model_key == "DeepSeek Lite Chat":
|
| 211 |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 212 |
+
# Load model with optimized memory
|
| 213 |
+
try:
|
| 214 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 215 |
model_name,
|
| 216 |
device_map="cpu", # Force CPU
|
| 217 |
torch_dtype=torch.float32, # Use float32 for CPU
|
| 218 |
low_cpu_mem_usage=True,
|
| 219 |
+
trust_remote_code=True,
|
| 220 |
+
max_memory={"cpu": "1.7GiB"}
|
| 221 |
+
)
|
| 222 |
+
except Exception as e:
|
| 223 |
+
print(f"Error loading DeepSeek with full settings: {str(e)}")
|
| 224 |
+
print("Trying with lightweight approach...")
|
| 225 |
+
|
| 226 |
+
# Fallback to lighter approach
|
| 227 |
+
import torch.nn as nn
|
| 228 |
+
from transformers import PreTrainedModel
|
| 229 |
+
|
| 230 |
+
# Trying to load model with smaller fraction
|
| 231 |
+
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 232 |
+
model_name,
|
| 233 |
+
device_map="cpu",
|
| 234 |
+
torch_dtype=torch.float32,
|
| 235 |
+
trust_remote_code=True,
|
| 236 |
+
low_cpu_mem_usage=True
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
MODEL_CACHE["is_gguf"] = False
|
| 240 |
|
| 241 |
# Handle standard HF models
|
|
|
|
| 302 |
}
|
| 303 |
return fallback_map.get(current_model, "Llama 2 Chat")
|
| 304 |
|
| 305 |
+
# Optimized pipeline for "problematic" models
|
| 306 |
+
def create_optimized_pipeline(model, tokenizer, model_key):
|
| 307 |
+
"""Optimized pipeline for problematic models"""
|
| 308 |
+
if model_key == "Phi-4 Mini Instruct" or model_key == "DeepSeek Lite Chat":
|
| 309 |
+
# Use minimum parameter
|
| 310 |
+
pipe = pipeline(
|
| 311 |
+
"text-generation",
|
| 312 |
+
model=model,
|
| 313 |
+
tokenizer=tokenizer,
|
| 314 |
+
max_new_tokens=128, # Kurangi jumlah token yang dihasilkan
|
| 315 |
+
temperature=0.3,
|
| 316 |
+
top_p=0.9,
|
| 317 |
+
return_full_text=False,
|
| 318 |
+
)
|
| 319 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 320 |
+
else:
|
| 321 |
+
# Default pipeline for other models
|
| 322 |
+
pipe = pipeline(
|
| 323 |
+
"text-generation",
|
| 324 |
+
model=model,
|
| 325 |
+
tokenizer=tokenizer,
|
| 326 |
+
max_new_tokens=256,
|
| 327 |
+
temperature=0.3,
|
| 328 |
+
top_p=0.9,
|
| 329 |
+
top_k=30,
|
| 330 |
+
repetition_penalty=1.2,
|
| 331 |
+
return_full_text=False,
|
| 332 |
+
)
|
| 333 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 334 |
+
|
| 335 |
def create_llm_pipeline(model_key):
|
| 336 |
"""Create a new pipeline using the specified model with better error handling"""
|
| 337 |
try:
|
|
|
|
| 380 |
# Remove return_full_text parameter for T5 models
|
| 381 |
)
|
| 382 |
else:
|
| 383 |
+
# Use optimized pipeline for problematic model
|
| 384 |
+
return create_optimized_pipeline(model, tokenizer, model_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
print("Pipeline created successfully")
|
| 387 |
return HuggingFacePipeline(pipeline=pipe)
|