ianshank
feat: add personality output and bug fixes
40ee6b4
"""
OpenAI-compatible LLM client adapter.
Implements the LLMClient protocol for OpenAI API (and compatible APIs).
Includes retry logic, circuit breaker pattern, and streaming support.
"""
import json
import logging
import time
from collections.abc import AsyncIterator
from typing import Any
import httpx
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from .base import BaseLLMClient, LLMResponse, LLMToolResponse, ToolCall
from .exceptions import (
CircuitBreakerOpenError,
LLMAuthenticationError,
LLMClientError,
LLMConnectionError,
LLMContextLengthError,
LLMInvalidRequestError,
LLMModelNotFoundError,
LLMQuotaExceededError,
LLMRateLimitError,
LLMResponseParseError,
LLMServerError,
LLMStreamError,
LLMTimeoutError,
)
logger = logging.getLogger(__name__)
class CircuitBreaker:
"""Simple circuit breaker implementation for resilience."""
def __init__(
self,
failure_threshold: int = 5,
reset_timeout: float = 60.0,
half_open_max_calls: int = 1,
):
self.failure_threshold = failure_threshold
self.reset_timeout = reset_timeout
self.half_open_max_calls = half_open_max_calls
self.failure_count = 0
self.last_failure_time = 0.0
self.state = "closed" # closed, open, half-open
self.half_open_calls = 0
def can_execute(self) -> bool:
"""Check if request can be executed."""
if self.state == "closed":
return True
if self.state == "open":
# Check if reset timeout has passed
if time.time() - self.last_failure_time >= self.reset_timeout:
self.state = "half-open"
self.half_open_calls = 0
return True
return False
if self.state == "half-open":
return self.half_open_calls < self.half_open_max_calls
return False
def record_success(self) -> None:
"""Record successful request."""
if self.state == "half-open":
self.state = "closed"
self.failure_count = 0
elif self.state == "closed":
self.failure_count = 0
def record_failure(self) -> None:
"""Record failed request."""
self.failure_count += 1
self.last_failure_time = time.time()
if self.state == "half-open" or self.failure_count >= self.failure_threshold:
self.state = "open"
def get_reset_time(self) -> float:
"""Get time until circuit resets."""
if self.state != "open":
return 0.0
elapsed = time.time() - self.last_failure_time
return max(0, self.reset_timeout - elapsed)
class OpenAIClient(BaseLLMClient):
"""
OpenAI API client with retry logic and circuit breaker.
Features:
- Exponential backoff retry for transient errors
- Circuit breaker to prevent cascading failures
- Streaming support
- Structured error handling
- Tool/function calling support
"""
PROVIDER_NAME = "openai"
DEFAULT_BASE_URL = "https://api.openai.com/v1"
DEFAULT_MODEL = "gpt-4-turbo-preview"
def __init__(
self,
api_key: str | None = None,
model: str | None = None,
base_url: str | None = None,
timeout: float = 60.0,
max_retries: int = 3,
organization: str | None = None,
# Circuit breaker settings
circuit_breaker_threshold: int = 5,
circuit_breaker_reset: float = 60.0,
# Rate limiting
rate_limit_per_minute: int | None = None,
):
"""
Initialize OpenAI client.
Args:
api_key: OpenAI API key (or set OPENAI_API_KEY env var)
model: Model to use (default: gpt-4-turbo-preview)
base_url: API base URL (default: https://api.openai.com/v1)
timeout: Request timeout in seconds
max_retries: Max retry attempts for transient errors
organization: Optional organization ID
circuit_breaker_threshold: Failures before circuit opens
circuit_breaker_reset: Seconds before circuit resets
rate_limit_per_minute: Rate limit for requests per minute (None to disable)
"""
import os
api_key = api_key or os.environ.get("OPENAI_API_KEY")
if not api_key:
raise LLMAuthenticationError(self.PROVIDER_NAME, "API key not provided and OPENAI_API_KEY not set")
super().__init__(
api_key=api_key,
model=model or self.DEFAULT_MODEL,
base_url=base_url or self.DEFAULT_BASE_URL,
timeout=timeout,
max_retries=max_retries,
rate_limit_per_minute=rate_limit_per_minute,
)
self.organization = organization
self.circuit_breaker = CircuitBreaker(
failure_threshold=circuit_breaker_threshold,
reset_timeout=circuit_breaker_reset,
)
# Initialize async HTTP client
self._client: httpx.AsyncClient | None = None
async def _get_client(self) -> httpx.AsyncClient:
"""Get or create the HTTP client."""
if self._client is None or self._client.is_closed:
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
if self.organization:
headers["OpenAI-Organization"] = self.organization
self._client = httpx.AsyncClient(
base_url=self.base_url,
headers=headers,
timeout=httpx.Timeout(self.timeout),
)
return self._client
def _handle_error_response(self, response: httpx.Response) -> None:
"""Convert HTTP error responses to appropriate exceptions."""
status_code = response.status_code
try:
error_data = response.json()
error_message = error_data.get("error", {}).get("message", response.text)
except Exception:
error_message = response.text
if status_code == 401:
raise LLMAuthenticationError(self.PROVIDER_NAME, error_message)
elif status_code == 429:
retry_after = response.headers.get("Retry-After")
retry_after_float = float(retry_after) if retry_after else None
raise LLMRateLimitError(self.PROVIDER_NAME, retry_after=retry_after_float, message=error_message)
elif status_code == 402:
raise LLMQuotaExceededError(self.PROVIDER_NAME, error_message)
elif status_code == 404:
raise LLMModelNotFoundError(self.PROVIDER_NAME, self.model)
elif status_code == 400:
if "context_length" in error_message.lower():
raise LLMContextLengthError(self.PROVIDER_NAME)
raise LLMInvalidRequestError(self.PROVIDER_NAME, error_message)
elif status_code >= 500:
raise LLMServerError(self.PROVIDER_NAME, status_code, error_message)
else:
raise LLMClientError(error_message, self.PROVIDER_NAME, status_code=status_code)
def _make_retry_decorator(self):
"""Create retry decorator with exponential backoff."""
return retry(
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=1, min=1, max=60),
retry=retry_if_exception_type((LLMRateLimitError, LLMServerError, LLMConnectionError)),
before_sleep=before_sleep_log(logger, logging.WARNING),
reraise=True,
)
async def generate(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stream: bool = False,
stop: list[str] | None = None,
**kwargs: Any,
) -> LLMResponse | AsyncIterator[str]:
"""
Generate a response from OpenAI.
Args:
messages: Chat messages in OpenAI format
prompt: Simple string prompt
temperature: Sampling temperature (0.0 to 2.0)
max_tokens: Maximum tokens to generate
tools: Tool definitions for function calling
stream: If True, returns AsyncIterator
stop: Stop sequences
**kwargs: Additional OpenAI parameters (top_p, presence_penalty, etc.)
Returns:
LLMResponse or AsyncIterator[str] for streaming
"""
# Apply rate limiting before proceeding
await self._apply_rate_limit()
# Check circuit breaker
if not self.circuit_breaker.can_execute():
raise CircuitBreakerOpenError(
self.PROVIDER_NAME,
self.circuit_breaker.failure_count,
self.circuit_breaker.get_reset_time(),
)
if stream:
return self._generate_stream(
messages=messages,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
stop=stop,
**kwargs,
)
else:
return await self._generate_non_stream(
messages=messages,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
tools=tools,
stop=stop,
**kwargs,
)
async def _generate_non_stream(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stop: list[str] | None = None,
**kwargs: Any,
) -> LLMResponse:
"""Non-streaming generation with retry logic."""
@self._make_retry_decorator()
async def _request():
client = await self._get_client()
# Build request payload
payload = {
"model": self.model,
"messages": self._build_messages(messages, prompt),
"temperature": temperature,
}
if max_tokens is not None:
payload["max_tokens"] = max_tokens
if stop:
payload["stop"] = stop
if tools:
payload["tools"] = tools
payload["tool_choice"] = kwargs.pop("tool_choice", "auto")
# Add any additional kwargs
payload.update(kwargs)
try:
response = await client.post("/chat/completions", json=payload)
except httpx.TimeoutException:
raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout)
except httpx.ConnectError:
raise LLMConnectionError(self.PROVIDER_NAME, self.base_url)
if response.status_code != 200:
self._handle_error_response(response)
return response
try:
response = await _request()
self.circuit_breaker.record_success()
except Exception:
self.circuit_breaker.record_failure()
raise
# Parse response
try:
data = response.json()
choice = data["choices"][0]
message = choice["message"]
usage = data.get("usage", {})
finish_reason = choice.get("finish_reason", "stop")
# Check for tool calls
if "tool_calls" in message:
tool_calls = [
ToolCall(
id=tc["id"],
name=tc["function"]["name"],
arguments=json.loads(tc["function"]["arguments"]),
)
for tc in message["tool_calls"]
]
llm_response = LLMToolResponse(
text=message.get("content", ""),
usage=usage,
model=data.get("model", self.model),
raw_response=data,
finish_reason=finish_reason,
tool_calls=tool_calls,
)
else:
llm_response = LLMResponse(
text=message.get("content", ""),
usage=usage,
model=data.get("model", self.model),
raw_response=data,
finish_reason=finish_reason,
)
self._update_stats(llm_response)
return llm_response
except (KeyError, json.JSONDecodeError) as e:
raise LLMResponseParseError(self.PROVIDER_NAME, response.text) from e
async def _generate_stream(
self,
*,
messages: list[dict] | None = None,
prompt: str | None = None,
temperature: float = 0.7,
max_tokens: int | None = None,
tools: list[dict] | None = None,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[str]:
"""Streaming generation."""
client = await self._get_client()
# Build request payload
payload = {
"model": self.model,
"messages": self._build_messages(messages, prompt),
"temperature": temperature,
"stream": True,
}
if max_tokens is not None:
payload["max_tokens"] = max_tokens
if stop:
payload["stop"] = stop
# Note: tools with streaming have limited support
if tools:
payload["tools"] = tools
payload.update(kwargs)
async def stream_generator():
try:
async with client.stream("POST", "/chat/completions", json=payload) as response:
if response.status_code != 200:
# Read the full response for error handling
await response.aread()
self._handle_error_response(response)
async for line in response.aiter_lines():
if line.startswith("data: "):
data_str = line[6:]
if data_str.strip() == "[DONE]":
break
try:
data = json.loads(data_str)
delta = data["choices"][0].get("delta", {})
content = delta.get("content", "")
if content:
yield content
except (json.JSONDecodeError, KeyError):
continue
self.circuit_breaker.record_success()
except httpx.TimeoutException:
self.circuit_breaker.record_failure()
raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout)
except httpx.ConnectError:
self.circuit_breaker.record_failure()
raise LLMConnectionError(self.PROVIDER_NAME, self.base_url)
except Exception as e:
self.circuit_breaker.record_failure()
if isinstance(e, LLMClientError):
raise
raise LLMStreamError(self.PROVIDER_NAME, str(e)) from e
return stream_generator()
async def close(self) -> None:
"""Close the HTTP client."""
if self._client and not self._client.is_closed:
await self._client.aclose()
self._client = None