Spaces:
Running
on
Zero
Running
on
Zero
change emoji
#1
by
gsaon
- opened
- .pre-commit-config.yaml +0 -1
- src/app.py +41 -57
.pre-commit-config.yaml
CHANGED
|
@@ -49,4 +49,3 @@ repos:
|
|
| 49 |
- id: poetry-export
|
| 50 |
name: poetry export for base requirements
|
| 51 |
args: [-f, requirements.txt, -o, requirements.txt, -n, --only=main, --without-hashes]
|
| 52 |
-
stages: [manual]
|
|
|
|
| 49 |
- id: poetry-export
|
| 50 |
name: poetry export for base requirements
|
| 51 |
args: [-f, requirements.txt, -o, requirements.txt, -n, --only=main, --without-hashes]
|
|
|
src/app.py
CHANGED
|
@@ -1,21 +1,21 @@
|
|
| 1 |
"""Template Demo for IBM Granite Hugging Face spaces."""
|
| 2 |
|
| 3 |
-
import os
|
| 4 |
from collections.abc import Iterator
|
| 5 |
from datetime import datetime
|
| 6 |
from pathlib import Path
|
| 7 |
from threading import Thread
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
-
import langid
|
| 11 |
import spaces
|
| 12 |
import torch
|
| 13 |
import torchaudio
|
|
|
|
|
|
|
| 14 |
from punctuators.models import PunctCapSegModelONNX
|
| 15 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, TextIteratorStreamer
|
| 16 |
-
|
| 17 |
pc_model = PunctCapSegModelONNX.from_pretrained("pcs_en")
|
| 18 |
|
|
|
|
|
|
|
| 19 |
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
|
| 20 |
|
| 21 |
MODEL_ID = "ibm-granite/granite-speech-3.3-2b"
|
|
@@ -31,36 +31,18 @@ model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
| 31 |
MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, offload_folder="offload/"
|
| 32 |
)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
def delete_file(path: str) -> None:
|
| 36 |
-
"""Delete a file if it exists.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
path (str): Path to the file to delete.
|
| 40 |
-
|
| 41 |
-
Returns:
|
| 42 |
-
None
|
| 43 |
-
"""
|
| 44 |
-
if path and os.path.exists(path):
|
| 45 |
-
try:
|
| 46 |
-
os.remove(path)
|
| 47 |
-
print(f"Deleted old audio file: {path}")
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"Warning: could not delete {path}: {e}")
|
| 50 |
-
|
| 51 |
-
|
| 52 |
@spaces.GPU
|
| 53 |
-
def transcribe(audio_file: str, user_prompt: str
|
| 54 |
-
"""
|
| 55 |
|
| 56 |
Args:
|
| 57 |
audio_file (str): Name of audio file from the user.
|
| 58 |
user_prompt (str): Instruction from the user (transcription or translation).
|
| 59 |
-
prev_file (str): Previously uploaded audio file.
|
| 60 |
|
| 61 |
Returns:
|
| 62 |
str: The generated transcription/translation of the audio file.
|
| 63 |
"""
|
|
|
|
| 64 |
# load wav file
|
| 65 |
wav, sr = torchaudio.load(audio_file, normalize=True)
|
| 66 |
if wav.shape[0] != 1 or sr != 16000:
|
|
@@ -68,40 +50,42 @@ def transcribe(audio_file: str, user_prompt: str, prev_file: str) -> Iterator[st
|
|
| 68 |
wav = torch.mean(wav, dim=0, keepdim=True) # mono
|
| 69 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
| 70 |
sr = 16000
|
| 71 |
-
|
| 72 |
-
# SAFE POINT: new audio is good → delete old audio if different
|
| 73 |
-
if prev_file != "" and prev_file != audio_file:
|
| 74 |
-
delete_file(prev_file)
|
| 75 |
-
|
| 76 |
-
# Update prev_file to the *current* file
|
| 77 |
-
prev_file = audio_file
|
| 78 |
-
|
| 79 |
# Build messages
|
| 80 |
chat = [
|
| 81 |
-
|
| 82 |
-
|
| 83 |
]
|
| 84 |
-
prompt = tokenizer.apply_chat_template(
|
|
|
|
| 85 |
|
| 86 |
# run model
|
| 87 |
-
model_inputs = processor(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
| 89 |
-
|
| 90 |
-
kwargs = dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
t = Thread(target=model.generate, kwargs=kwargs)
|
| 92 |
t.start()
|
| 93 |
|
| 94 |
text = ""
|
| 95 |
for chunk in streamer:
|
| 96 |
text += chunk
|
| 97 |
-
yield text
|
| 98 |
|
| 99 |
# Apply cap+punct for English-only
|
| 100 |
-
if langid.classify(text)[0] ==
|
| 101 |
text = pc_model.infer([text])
|
| 102 |
-
|
| 103 |
-
yield text, prev_file
|
| 104 |
-
|
| 105 |
|
| 106 |
css_file_path = Path(Path(__file__).parent / "app.css")
|
| 107 |
head_file_path = Path(Path(__file__).parent / "app_head.html")
|
|
@@ -109,25 +93,25 @@ head_file_path = Path(Path(__file__).parent / "app_head.html")
|
|
| 109 |
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, title=TITLE) as demo:
|
| 110 |
gr.Markdown(f"# {TITLE}")
|
| 111 |
gr.Markdown(DESCRIPTION)
|
| 112 |
-
|
| 113 |
-
# State to store the previously uploaded audio file
|
| 114 |
-
prev_audio = gr.State(value="")
|
| 115 |
-
|
| 116 |
with gr.Row():
|
| 117 |
-
audio_input = gr.Audio(type="filepath",
|
|
|
|
| 118 |
with gr.Column():
|
| 119 |
output_text = gr.Textbox(label="Transcription", lines=5)
|
| 120 |
-
choices = [
|
| 121 |
"Transcribe the speech to text",
|
| 122 |
-
"Translate the speech to French",
|
| 123 |
-
"Translate the speech to German",
|
| 124 |
"Translate the speech to Spanish",
|
| 125 |
-
"Translate the speech to Portuguese"
|
| 126 |
]
|
| 127 |
-
user_prompt = gr.Dropdown(
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
if __name__ == "__main__":
|
| 133 |
demo.launch()
|
|
|
|
| 1 |
"""Template Demo for IBM Granite Hugging Face spaces."""
|
| 2 |
|
|
|
|
| 3 |
from collections.abc import Iterator
|
| 4 |
from datetime import datetime
|
| 5 |
from pathlib import Path
|
| 6 |
from threading import Thread
|
| 7 |
|
| 8 |
import gradio as gr
|
|
|
|
| 9 |
import spaces
|
| 10 |
import torch
|
| 11 |
import torchaudio
|
| 12 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, TextIteratorStreamer
|
| 13 |
+
import langid
|
| 14 |
from punctuators.models import PunctCapSegModelONNX
|
|
|
|
|
|
|
| 15 |
pc_model = PunctCapSegModelONNX.from_pretrained("pcs_en")
|
| 16 |
|
| 17 |
+
from themes.research_monochrome import theme
|
| 18 |
+
|
| 19 |
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
|
| 20 |
|
| 21 |
MODEL_ID = "ibm-granite/granite-speech-3.3-2b"
|
|
|
|
| 31 |
MODEL_ID, device_map="auto", torch_dtype=torch.bfloat16, offload_folder="offload/"
|
| 32 |
)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
@spaces.GPU
|
| 35 |
+
def transcribe(audio_file: str, user_prompt: str) -> Iterator[str]:
|
| 36 |
+
"""transcribe function for ASR demo.
|
| 37 |
|
| 38 |
Args:
|
| 39 |
audio_file (str): Name of audio file from the user.
|
| 40 |
user_prompt (str): Instruction from the user (transcription or translation).
|
|
|
|
| 41 |
|
| 42 |
Returns:
|
| 43 |
str: The generated transcription/translation of the audio file.
|
| 44 |
"""
|
| 45 |
+
|
| 46 |
# load wav file
|
| 47 |
wav, sr = torchaudio.load(audio_file, normalize=True)
|
| 48 |
if wav.shape[0] != 1 or sr != 16000:
|
|
|
|
| 50 |
wav = torch.mean(wav, dim=0, keepdim=True) # mono
|
| 51 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
| 52 |
sr = 16000
|
| 53 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
# Build messages
|
| 55 |
chat = [
|
| 56 |
+
dict(role="system", content=SYS_PROMPT),
|
| 57 |
+
dict(role="user", content=f"<|audio|>{user_prompt}"),
|
| 58 |
]
|
| 59 |
+
prompt = tokenizer.apply_chat_template(
|
| 60 |
+
chat, tokenize=False, add_generation_prompt=True)
|
| 61 |
|
| 62 |
# run model
|
| 63 |
+
model_inputs = processor(
|
| 64 |
+
prompt,
|
| 65 |
+
wav,
|
| 66 |
+
device=model.device,
|
| 67 |
+
return_tensors="pt").to(model.device)
|
| 68 |
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
| 69 |
+
|
| 70 |
+
kwargs = dict(
|
| 71 |
+
**model_inputs,
|
| 72 |
+
streamer=streamer,
|
| 73 |
+
max_new_tokens=512,
|
| 74 |
+
do_sample=False,
|
| 75 |
+
num_beams=1
|
| 76 |
+
)
|
| 77 |
t = Thread(target=model.generate, kwargs=kwargs)
|
| 78 |
t.start()
|
| 79 |
|
| 80 |
text = ""
|
| 81 |
for chunk in streamer:
|
| 82 |
text += chunk
|
| 83 |
+
yield text
|
| 84 |
|
| 85 |
# Apply cap+punct for English-only
|
| 86 |
+
if langid.classify(text)[0] == 'en':
|
| 87 |
text = pc_model.infer([text])
|
| 88 |
+
yield " ".join(text[0])
|
|
|
|
|
|
|
| 89 |
|
| 90 |
css_file_path = Path(Path(__file__).parent / "app.css")
|
| 91 |
head_file_path = Path(Path(__file__).parent / "app_head.html")
|
|
|
|
| 93 |
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, title=TITLE) as demo:
|
| 94 |
gr.Markdown(f"# {TITLE}")
|
| 95 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
with gr.Row():
|
| 97 |
+
audio_input = gr.Audio(type="filepath",
|
| 98 |
+
label="Upload Audio (16kHz mono preferred)")
|
| 99 |
with gr.Column():
|
| 100 |
output_text = gr.Textbox(label="Transcription", lines=5)
|
| 101 |
+
choices = [
|
| 102 |
"Transcribe the speech to text",
|
| 103 |
+
"Translate the speech to French",
|
| 104 |
+
"Translate the speech to German",
|
| 105 |
"Translate the speech to Spanish",
|
| 106 |
+
"Translate the speech to Portuguese"
|
| 107 |
]
|
| 108 |
+
user_prompt = gr.Dropdown(label="Prompt", choices=choices, interactive=True, allow_custom_value=True, value=choices[0])
|
| 109 |
+
audio_input.play(
|
| 110 |
+
transcribe,
|
| 111 |
+
inputs=[
|
| 112 |
+
audio_input,
|
| 113 |
+
user_prompt],
|
| 114 |
+
outputs=output_text)
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
| 117 |
demo.launch()
|