minimind / trainer /train_distillation.py
jiaweichen's picture
Upload 45 files
9171a3a verified
import os
import sys
__package__ = "trainer"
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import argparse
import time
import math
import warnings
import torch
import torch.nn.functional as F
import torch.distributed as dist
from contextlib import nullcontext
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model_minimind import MiniMindConfig, MiniMindForCausalLM
from dataset.lm_dataset import SFTDataset
warnings.filterwarnings('ignore')
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(current_step, total_steps, lr):
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
def distillation_loss_fn(student_logits, teacher_logits, temperature=1.0, reduction='batchmean'):
with torch.no_grad():
teacher_probs = F.softmax(teacher_logits / temperature, hidden_size=-1).detach()
student_log_probs = F.log_softmax(student_logits / temperature, hidden_size=-1)
kl = F.kl_div(
student_log_probs,
teacher_probs,
reduction=reduction
)
return (temperature ** 2) * kl
def train_epoch(epoch, wandb, alpha=0.0, temperature=1.0):
start_time = time.time()
if teacher_model is not None:
teacher_model.eval()
teacher_model.requires_grad_(False)
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step,
args.epochs * iter_per_epoch,
args.learning_rate)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# 前向传播(学生模型)
with ctx:
res = model(X)
student_logits = res.logits
# 教师模型前向传播(只在eval & no_grad)
if teacher_model is not None:
with torch.no_grad():
teacher_logits = teacher_model(X).logits
vocab_size_student = student_logits.size(-1) # N
teacher_logits = teacher_logits[..., :vocab_size_student]
# ========== 计算损失 ==========
# 1) Ground-Truth CE Loss(可选)
loss_mask_flat = loss_mask.view(-1)
ce_loss = F.cross_entropy(
student_logits.view(-1, student_logits.size(-1)),
Y.view(-1),
ignore_index=0,
reduction='none'
)
ce_loss = torch.sum(ce_loss * loss_mask_flat) / loss_mask_flat.sum()
if lm_config_student.use_moe:
ce_loss += res.aux_loss
# 2) Distillation Loss(可选)
if teacher_model is not None:
# 只在有效token位置做蒸馏
distill_loss = distillation_loss_fn(
student_logits.view(-1, student_logits.size(-1))[loss_mask_flat == 1],
teacher_logits.view(-1, teacher_logits.size(-1))[loss_mask_flat == 1],
temperature=temperature
)
else:
distill_loss = torch.tensor(0.0, device=args.device)
# 3) 总损失 = alpha * CE + (1-alpha) * Distill
loss = (alpha * ce_loss + (1 - alpha) * distill_loss) / args.accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.4f} lr:{:.12f} epoch_Time:{}min:'.format(
epoch,
args.epochs - 1,
step,
iter_per_epoch,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60
)
)
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({
"loss": loss.item(),
"ce_loss": ce_loss.item(),
"distill_loss": distill_loss.item() if teacher_model is not None else 0.0,
"lr": optimizer.param_groups[-1]['lr'],
"last-time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60
})
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
moe_path = '_moe' if lm_config_student.use_moe else ''
ckp = f'{args.save_dir}/full_dist_{lm_config_student.hidden_size}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
state_dict = {k: v.half() for k, v in state_dict.items()} # 半精度保存
torch.save(state_dict, ckp)
model.train()
def init_student_model(lm_config):
tokenizer = AutoTokenizer.from_pretrained('../model/')
model = MiniMindForCausalLM(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/full_sft_{lm_config.hidden_size}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
Logger(f'学生模型(LLM)总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
model = model.to(args.device)
return model, tokenizer
def init_teacher_model(lm_config):
model = MiniMindForCausalLM(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/full_sft_{lm_config.hidden_size}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict(state_dict, strict=False)
Logger(f'教师模型(LLM)总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
model = model.to(args.device)
return model
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind Full SFT")
parser.add_argument("--out_dir", type=str, default="../out")
parser.add_argument("--epochs", type=int, default=6)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--learning_rate", type=float, default=5e-6)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT")
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument("--ddp", action="store_true")
parser.add_argument("--accumulation_steps", type=int, default=1)
parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=100)
parser.add_argument("--max_seq_len", type=int, default=512)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument("--data_path", type=str, default="../dataset/sft_xxx.jsonl")
args = parser.parse_args()
# 定义学生模型和教师模型
lm_config_student = MiniMindConfig(hidden_size=512, num_hidden_layers=8)
lm_config_teacher = MiniMindConfig(hidden_size=768, num_hidden_layers=16)
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * args.max_seq_len
device_type = "cuda" if "cuda" in args.device else "cpu"
args.wandb_run_name = f"MiniMind-Dist-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
base_seed = 1337
torch.manual_seed(base_seed)
torch.cuda.manual_seed(base_seed)
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
rank = dist.get_rank()
torch.manual_seed(base_seed + rank)
# 同时设置 CUDA 的随机种子
torch.cuda.manual_seed(base_seed + rank)
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
# 初始化学生模型和教师模型
model, tokenizer = init_student_model(lm_config_student)
teacher_model = init_teacher_model(lm_config_teacher)
train_ds = SFTDataset(args.data_path, tokenizer, max_length=args.max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)